Intersect（ING）Variables

James A．Walker（La Trobe University）

Methods in Dialectology XVI

立川市 Tachikawa•August 2016

(ING): Variation in Final Consonant

- Variable realization as velar [n] or alveolar [n]
- Well studied in both production (e.g. Fischer 1958; Labov 1966; Trudgill 1974) and perception (e.g. Campbell-Kibler 2009 ...)
- Historical convergence (Houston 1985; Labov 1989):
- Verbal noun-inge/ynge >-ing
- Participle -inde >-ind >-in
- Velar variant a hypercorrection or spelling pronunciation (Wells 1982)?
- Occurs in all varieties of English
- Social constraints (social class, sex/gender, ethnicity ...)
- Stylistic constraints
- Linguistic constraints (phonological context, grammatical status)

(ING): Variation in the Vowel?

- Canadian English:
- Vancouver (Gregg 1974/1992) [ın], [in], [In], [ən], [n], [iŋ]
- Ottawa (Woods 1979/1999)
[ın], [in], [ən]

(ING): Variation in the Vowel?

- Does (ING) have two variants, or three? (or more?) (e.g. Rosen 2015; Rosen, Ankutowicz \& D’Arcy 2016)
- Are the tense-vowel variants on the rise in Canadian English? (e.g. Chambers 2009)
- Is the vowel variation available for social evaluation?

Toronto - Tokyo - Melbourne

Stratification of Informants by Ethnic Origin, Generation and Sex

```
(As of July 31, 2017)
```


Extracting and Coding (ING)

- Variable Context
- Word-final unstressed -ing
- Social Factors
- Speaker
- Ethnic background
- Generation
- Sex/gender
- Linguistic Factors
- Grammatical status
- Verb, Noun, Adjective, -thing, Preposition
- Consonant
- Velar [n] vs. Apical [n]
- ("stopped" velar [ŋk], [ŋg])
- Vowel
- Lax [I] vs. Tense [i]

speak[in]
think[in]
shin[ing]

Data Transcription

- Time-aligned transcription in ELAN

Extracting Tokens

- Forced alignment with FAVE (Rosenfelder et al. 2011)
- Force-aligns segments in transcription with wave-form in sound file
- Produces TextGrid

Coding Tokens

- Using FAVE-Extract
- Extracts and measures vowel formants using TextGrid and sound file
- Normalises tokens using Lobanov method
- Locates unstressed final -ing and take measurement at 50\% point

Informants Coded for (ING)

(As of July 31, 2017)

	Ethnic Origin:																	
	British/ Irish		Chinese		Filipino		Greek		Italian		Jewish		Korean		Portuguese		Punjabi	
Gen:				M	F	M	F	M	F	M	F	M	F	M	F	M	F	M
$1^{\text {st }}$	8	6	5	4			2	3	6	3					5	1	1	1
$2^{\text {nd }} / 3^{\text {rd }}$	6	6	11	10			1	3	9	8					4	2	10	11
Total:	14	12	16	14			3	6	15	11					9	3	11	12
Ethnicity Total:	26		30				9		26						12		23	
Grand Total:									126						8,910 tokens			

Informants Considered in this Study

Overall Distribution of (ING) Tokens

- Plotted with R package phonR (McCloy 2016)
- High degree of overlap!

Overall Distribution of (ING) Tokens

- Plotted with R package phonR (McCloy 2016)
- High degree of overlap!

Overall Distribution of (ING) Tokens

- Plotted with R package phonR (McCloy 2016)
- High degree of overlap!

But not complete overlap of means or standard deviations!

Mixed-effects linear regression with Rbrul (Johnson 2009)

- Dependent variable:
- Lobanov-normalised F1 value of vowel: lower value = higher vowel
- Independent variables:
- Speaker (random)
- Ethnicity (+ Generation)
- Sex interaction
- Word (random)
- Place of segment preceding (ING) (vowel, labial, alveplar, palatal, velar)
- Place of segment following vowel (alveolar or velar)
- Grammatical status (noun, verb, adjective, preposition, -thing)

Mixed-effects linear regression with Rbrul (Johnson 2009)

1. Preceding Place	
Vowel	41.177
Liquid	21.983
Alveolar	-3.032
Labial	-8.014
Palatal	-18.208
Velar	-33.706

2. Ethnic Background (+ Generation) x Following Place	
British/Irish (older) x alveolar	16.765
Greek (G2) x velar	11.744
Chinese(G2) x velar	4.201
Italian(G2) x velar	4.145
British/Irish (younger) x alveolar	3.893
Punjabi (G2) x velar	1.578
Portuguese (G2) x alveolar	1.012
Portuguese (G2) x velar	-1.012
Punjabi (G2) x alveolar	-1.578
British/Irish (younger) x velar	-3.893
Italian (G2) x alveolar	-4.145
Chinese (G2) x alveolar	-4.201
Greek (G2) x alveolar	-11.744
British/Irish (older) x velar	-16.765

Mixed-effects linear regression with Rbrul (Johnson 2009)

3. Sex x Following Place
Female x Velar 3.455 Male x Alveolar 3.455 Female x Alveolar -3.455 Male x Velar -3.455

4. Grammatical Status	
Preposition	17.535
-thing	12.700
Adjective	-4.197
Noun	-12.174
Verb	-13.863

BEST MODEL: Speaker [random], Word [random],
Preceding Place ($p=3.63 \times 10^{-26}$),
Ethnicity(+Generation) x Following Place ($p=0.000132$),
Sex x Following Place ($p=0.0144$),
Grammatical Status ($p=0.0209$)

Conclusions

- Does (ING) have more than two variants?
- Better viewed as co-variation between the vowel $([ə] \leftrightarrow[\mathrm{I}] \leftrightarrow[\mathrm{i}])$ and the consonant ([n$]$ ~ [n])
- Linguistic conditioning;
- Preceding palatal/velar \rightarrow higher vowel
- Preposition/-thing \rightarrow lower vowel
- Social conditioning
- [in] favoured by women, [in] favoured by men
- Split between British/Irish speakers and other ethnic groups
- Are the tense-vowel variants unique to Canadian English? (If so, why??)
- Vowel in (ING) hasn't received much attention in other varieties of English (AFAIK)
- Place of following consonant may influence perception of preceding vowel
- More studies!

Thayk you！

Special thayks to Mélissa Boisson，Gabrielle Lafortune and Yvette Freake！

ありがとうございました！
j．walker2＠latrobe．edu．au
Generously supported by：
an Social Sciences and Humanities
Research Council of Canada
Conseil de recherches en sciences humaines du Canada
Canadà

Mixed-effects linear regression of F2 with Rbrul (Johnson 2009)

1. Preceding Place	
Velar	91.341
Palatal	87.483
Alveolar	25.099
Labial	-3.687
Vowel	-82.728
Liquid	-117.508

3. Sex \times Following Place
Female \times Alveolar 15.283 Male \times Velar 15.283 Female \times Velar -15.283 Male \times Alveolar -15.283

BEST MODEL: Speaker [random], Word [random], Preceding Place ($p=1.01 \times 10^{-10}$), Ethnicity + Generation x Following Place ($p=0.000441$), Sex x Following Place ($p=0.00821$)

British/Irish (younger) x velar	40.292
Chinese (G2) x alveolar	38.632
Italian (G2) \times alveolar	32.830
Portuguese (G2) \times velar	21.750
British/Irish (older) \times alveolar	19.329
Greek (G2) x velar	18.999
Punjabi (G2) x velar	9.750
Punjabi (G2) x alveolar	-9.750
Greek(G2) x alveolar	-18.999
British/Irish (older) x velar	-19.329
Portuguese (G2) x alveolar	-21.751
Italian (G2) x velar	-32.830
Chinese (G2) x velar	-38.632
British/Irish (older) x velar	-40.292

