

Interactions

Sometimes two variables appear related:
> smoking and lung cancers
> height and weight
> years of education and income
> engine size and gas mileage
$>$ GMAT scores and MBA GPA
> house size and price

Interactions

> Some of these variables would appear to positively related \& others negatively
> If these were related, we would expect to be able to derive a linear relationship:

$$
y=a+b x
$$

$>$ where, b is the slope, and
$>\quad a$ is the intercept

Linear Relationships

> We will be deriving linear relationships from bivariate (two-variable) data
> Our symbols will be:

$$
\begin{aligned}
y & =\beta_{0}+\beta_{1} x+\varepsilon & \text { or } \hat{y}=\beta_{0}+\beta_{1} x \\
\hat{\beta}_{1} & \equiv \text { Slope } & \hat{\beta}_{0} \equiv \text { Intercept } \\
\varepsilon & \equiv \text { Error term } &
\end{aligned}
$$

Estimating a Line
$>$ The symbols for the estimated linear
relationship are:
$\qquad \hat{y}=b_{0}+b_{1} x$
$>b_{1}$ is our estimate of the slope, β_{1}
$>b_{0}$ is our estimate of the intercept, β_{0}
YORKK \mathbf{U}_{5}

Example

> Consider the following example comparing the returns of Consolidated Moose Pasture stock (CMP) and the TSX 300 Index
> The next slide shows 25 monthly returns
©Copright 2005, Alan Marshal \quad YORK U

Example Data

TSX	CMP	TSX	CMP	TSX	CMP
x	y	x	y	x	y
3	4	-4	-3	2	4
-1	-2	-1	0	-1	1
2	-2	0	-2	4	3
4	2	1	0	-2	-1
5	3	0	0	1	2
-3	-5	-3	1	-3	-4
-5	-2	-3	-2	2	1
1	2	1	3	-2	-2
2	-1				

Example

> From the data, it appears that a positive relationship may exist

- Most of the time when the TSX is up, CMP is up
- Likewise, when the TSX is down, CMP is down most of the time
- Sometimes, they move in opposite directions
> Let's graph this data

Example Summary Statistics

> The data do appear to be positively related
> Let's derive some summary statistics about these data:

	Mean	s^{2}	s
TSX	0.00	7.25	2.69
CMP	0.00	6.25	2.50
©Copyright 2005, Alan Masshal			YORK U $_{11}$

Observations

> Both have means of zero and standard deviations just under 3
> However, each data point does not have simply one deviation from the mean, it deviates from both means
> Consider Points A, B, C and D on the next graph

Implications

$>$ When points in the upper right and lower left quadrants dominate, then the sums of the products of the deviations will be positive
> When points in the lower right and upper left quadrants dominate, then the sums of the products of the deviations will be negative
© Copyright 2005, Alan Marshall \quad YORK U.

An Important Observation

> The sums of the products of the deviations will give us the appropriate sign of the slope of our relationship

Covariance

$\operatorname{COV}(X, Y) \equiv \sigma_{X Y}=\frac{\sum_{i=1}^{N}\left(x_{i}-\mu_{x}\right)\left(y_{i}-\mu_{y}\right)}{N}$
$\operatorname{cov}(X, Y)=s_{X Y}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{n-1}=\frac{\sum x_{i} y_{i}-\frac{\left(\sum x_{i} \sum y_{i}\right)}{n}}{n-1}$

Covariance

> In the same units as Variance (if both variables are in the same unit), i.e. units squared
> Very important element of measuring portfolio risk in finance

Using Covariance

$>$ Very useful in Finance for measuring portfolio risk
> Unfortunately, it is hard to interpret for two reasons:
-What does the magnitude/size imply?

- The units are confusing

A More Useful Statistic

> We can simultaneously adjust for both of these shortcomings by dividing the covariance by the two relevant standard deviations
> This operation

- Removes the impact of size \& scale
- Eliminates the units

Correlation

> Correlation measures the sensitivity of one variable to another, but ignoring magnitude
> Range: -1 to 1
> +1: Implies perfect positive co-movement
> -1: Implies perfect negative co-movement
> 0: No relationship

Regression Analysis

\square

Calculating Correlation

$$
\begin{aligned}
\rho_{X Y} & =\frac{\operatorname{COV}(X, Y)}{\left(\sigma_{X}\right)\left(\sigma_{Y}\right)} \\
r_{X Y} & =\hat{\rho}_{X Y}=\frac{\operatorname{cov}(X, Y)}{s_{X} s_{Y}}
\end{aligned}
$$

Regression Analysis

> A statistical technique for determining the best fit line through a series of data

Error

$>$ No line can hit all, or even most of the points The amount we miss by is called ERROR
$>$ Error does not mean mistake! It simply means the inevitable "missing" that will happen when we generalize, or try to describe things with models
> When we looked at the mean and variance, we called the errors deviations

What Regression Does

> Regression finds the line that minimizes the amount of error, or deviation from the line
$>$ The mean is the statistic that has the minimum total of squared deviations
> Likewise, the regression line is the unique line that minimizes the total of the squared errors.
> The Statistical term is "Sum of Squared Errors" or SSE
> Suppose we are examining the sale prices of compact cars sold by rental agencies and that we have the following summary statistics:

Example

Summary Statistics

Price		> Our best estimate of the average price would be $\$ 5,411$
Mean	5411.41	
Median	5362	
Mode	5286	> Our 95\% Confidence
Standard Deviation	254.9488004	Interval would be
Range	1124	\$5,411 \pm (2)(255) or
Minimum	4787	$\$ 5,411 \pm(510) \text { or }$
Maximum	5911	
Sum	541141	\$4,901 to \$5,921
Count	100	
© Copyright 2005, Alan Marshall		YORK

Something Missing?

> Clearly, looking at this data in such a simplistic way ignores a key factor: the mileage of the vehicle

Importance of the Factor

> After looking at the scatter graph, you would be inclined to revise you estimate depending on the mileage

- 25,000 km about \$5,700-\$5,900
- 45,000 km about \$5,100-\$5,300
$>$ Similar to getting new information when we look at Bayes Theorem.

Switch to Excel

File CarPrice.xls
Tab Odometer

Stripped Down Output				
Regression Statistics				
Multiple R	0.806307604			
R Square	0.650131952			
Adjusted R Square	0.64656187			
Standard Error	151.5687515			
Observations	100			
	Coefficients	Standard Error	t Stat	P-value
Intercept	6533.383035	84.51232199	77.30686935	$1.22253 \mathrm{E}-89$
Odometer	-0.031157739	0.002308896	-13.49465085	4.44346E-24
© Copyright 2005, Alan Marshall				YORK【

Stripped Down Output

Interpretation

> Our estimated relationship is
$>$ Price $=\$ 6,533-0.031(\mathrm{~km})$

- Every 1000 km reduces the price by an average of \$31
- What does the $\$ 6,533$ mean?
- Careful! It is outside the data range!

35

A Useful Formula

$$
\hat{\beta}_{1} \equiv \mathrm{~b}_{1}=\frac{\operatorname{cov}(\mathrm{x}, \mathrm{y})}{\operatorname{var}(\mathrm{x})}
$$

> The estimate of the slope coefficient is the ratio of the covariance between the dependent and independent variables and the variance of the independent variable

The TSX-CMP Example

$$
\begin{aligned}
& >\operatorname{Cov}(T S X, C M P)=4.875 \\
& >\operatorname{Var}(\mathrm{TSX})=7.25 \\
& >\mathrm{b}_{1}=4.875 / 7.25=0.6724
\end{aligned}
$$

Required Conditions - ε

$>$ The probability distribution of ε is normal
$>E(\varepsilon)=0$
$>\sigma_{\varepsilon}$ is constant and independent of x, the independent variable
$>$ The value of ε associated with any particular value of y is independent of the value of ε associated with any other value of y

Assessing the Model

SSE \& SEE

> SSE: Sum of Squares for Error

- This is the sum of the squared errors from the regression line
> SEE: Standard Error of Estimate

$$
s_{\varepsilon}=\sqrt{\frac{S S E}{n-2}}
$$

$>$ We want these to be as small as possible
$>$ Our best test is the F-ratio from the ANOVA table

- To see if the SSE is small relative to the SSR, Sum of Squares for the Regression
> In Excel, the "Error" is called the residual

Testing the Slope

> The regression output tells us the standard deviation of the slope coefficient estimate
> We are most often interested in testing to see if the estimated slope is non-zero

$$
\mathrm{H}_{\mathrm{O}}: \beta_{1}=0
$$

> Sometimes test whether the slope is some other value, i.e., $\mathrm{H}_{\mathrm{o}}: \beta_{1}=1$
© Copyright 2005, Alan Marshall \quad YORK U

Testing the Slope

> From the Car Price Example

	Coefficients	Standard Error	t Stat	P-value
Intercept	6533.383035	84.51232199	77.30687	$1.2225 \mathrm{E}-89$
Odometer	-0.031157739	0.002308896	-13.4947	$4.4435 \mathrm{E}-24$

$>$ The t-ratio is very large and the p-value very small, so there is strong evidence that the slope is non-zero

TSX-CMP Example

TSX-CMP Example
> We can easily see that the test of the slope indicates that it is non-zero $>$ Is the slope different from 1? $H_{0}: \beta_{1}=1$
Ocopyright 2005, Alan Masshal

TSX-CMP Example

$$
\begin{aligned}
& t=\frac{b_{1}-\beta_{1}}{s_{\beta_{1}}} \\
& =\frac{0.6724-1}{0.1335}=\frac{0.3276}{0.1335} \\
& =2.454>t_{0.025,24}=2.064
\end{aligned}
$$

We reject the null hypothesis, $\mathrm{H}_{0}: \beta_{1}=1$. There is evidence that the slope is less than 1

R^{2} : Coefficient of Determination

> The R ${ }^{2}$ ("R-squared") tells of the proportion of the variability in our dependent variable is explained by the independent variable
> It is the square of the correlation coefficient
$>$ It can also be computed from the ANOVA table

Car Price Example

Regression Statistics	
Multiple R	0.80631
R Square	$\mathbf{0 . 6 5 0 1 3}$
Adjusted R Square	0.64656
Standard Error	151.569
Observations	100

ANOVA

	$d f$				
	$S S$	$M S$	F		
Regression	1	4183527.7	4183528	182.106	
Residual	98	2251362.5	22973.09		
Total	99	6434890.2			

Car Price Example: Quality

> Logical: Price is lowered as mileage increases, and by a plausible amount.
> The slope: 13.5σ from 0 !

- Occurs randomly, or by chance, with a probability that has 23 zeros!
> The R-squared: 0.65: 65\% of the variation in price is explained by mileage
$>F$ Ratio is high
© Copyright 2005, Alan Marshall

Symmetry in Testing

SUMMARY OUTPUT					
Regression Statistics					
Multiple R	0.806307604				
R Square	0.650131952				
Adjusted R Square	0.64656187				
Standard Error	151.5687515				
Observations	100				
ANOVA					
	df	SS	MS	F	Significance F
Regression	1	4183527.721	4183527.721	182.1056015	$4.44346 \mathrm{E}-24$
Residual	98	2251362.469	22973.08642		
Total	99	6434890.19			
	Coefficients	Standard Error	t Stat	P-value	
Intercept	6533.383035	84.51232199	77.30686935	1.22253E-89	
Odometer	-0.031157739	0.002308896	-13.49465085	4.44346E-24	
© Copyright 2005, Alan Marshall					ORK

The Correlation Coefficient

$>$ We can test the significance of the correlation coefficient

$$
\begin{aligned}
& s_{r}=\sqrt{\frac{1-r^{2}}{n-2}} \\
& t=\frac{r}{s_{r}}=r \sqrt{\frac{n-2}{1-r^{2}}}
\end{aligned}
$$

In the Car Price Example

$$
\begin{aligned}
\mathrm{t} & =(-0.8063) \sqrt{\frac{100-2}{1-(-0.8063)^{2}}} \\
& =(-0.8063) \sqrt{\frac{98}{0.34988}} \\
& =(-0.8063)(16.736) \\
& =-13.49
\end{aligned}
$$

More Consistency
> Notice that this is the same t value that we
had for the test of the slope
©Copyight 2005. Alan Marshal

Predicting Values with the
Regression Equation
YORK \mathbf{U}_{56}

Prediction

> Suppose you wanted to know what price you would get for a car, of the same model as those tested in our example with 40,000 km.

$$
y=6533.4-0.03116(40,000)=5,287
$$

> Once again, we have the situation of a point estimate, when we are likely most interested in a range or interval.

$$
\hat{y} \pm t_{\alpha / 2, n-2} s_{\varepsilon} \sqrt{1+\frac{1}{n}+\frac{\left(x_{g}-\bar{x}\right)^{2}}{(n-1) s_{x}^{2}}}
$$

Prediction Intervals

$\hat{y} \pm t_{\alpha / 2, n-2} s_{\varepsilon} \sqrt{1+\frac{1}{n}+\frac{\left(x_{g}-\bar{x}\right)^{2}}{(n-1) s_{x}^{2}}}$
YORK \mathbf{U}_{∞}

In Our Example

$5,287 \pm(1.984)(151.57) \sqrt{1+\frac{1}{100}+\frac{(40,000-36,009.45)^{2}}{(99)(43,528,690)}}$
$5,287 \pm(300.712) \sqrt{1.01+\frac{15,924,489}{4,309,340,310}}$
$5,287 \pm 302.76$
$4,984.24$ to $5,589.76$

©Copyight 2005, Alan Narshal

Different Problem

> Suppose I am managing a fleet and decide to sell these cars once they have reached $40,000 \mathrm{~km}$. What is the expected price I will get for the cars following this policy?
> Instead of predicting an individual value, I am asking for an expected value
> Similar to a Cl of the mean vs. the Cl of an individual value

Expected Value - Interval Estimate

$\hat{y} \pm t_{\alpha / 2, n-2} s_{\varepsilon} \sqrt{\frac{1}{n}+\frac{\left(x_{g}-\bar{x}\right)^{2}}{(n-1) s_{x}^{2}}}$

Just like the confidence intervals we saw in ADMS3320

EV - Interval Estimate

$\underbrace{\hat{y} \pm t_{\alpha / 2, n-2} s_{\varepsilon} \sqrt{\frac{1}{n}}+\underbrace{\frac{\left(x_{g}-\bar{x}\right)^{2}}{(n-1) s_{x}^{2}}}}$ Adjustment for the distance from the mean of the data

In Our Example
$5,287 \pm(1.984)(151.57) \sqrt{\frac{1}{100}+\frac{(40,000-36,009.45)^{2}}{(99)(43,528,690)}}$
$5,287 \pm(300.712) \sqrt{0.01+\frac{15,924,489}{4,309,340,310}}$
$5,287 \pm(300.712)(0.117027 \ldots)$
$5,287 \pm 35.19$
$5,251.81$ to $5,322.19$
๑Copyright 2000, Alan Marshal

Prediction vs Interval Estimate

> Prediction Interval for a single observation of the dependent variable at a given value of the independent variable:
$4,984.24$ to $5,589.79$
> Interval Estimate for a mean value of the dependent variable at a given value of the independent variable:
$5,251.81$ to $5,322.19$
© Copyright 2005, Alan Marshall

Multiple Regression

> Why restrict ourselves to only one variable to explain variation?
> Very little changes, except there are more diagnostics we need to consider

- The Independent Variables need to be independent of each other

Marks Example

> Suppose that we had additional information in the marks/study time example we did last lecture
> The additional information is the numerical grade achieved in the pre-requisite course
$>$ Partial data is on the next slide

Example - Marks

StudyTime	Prereq	Mark
30	70	71
5	66	30
36	67	82
37	89	98
32	58	78
23	79	73
34	72	82
2	55	25
© Copyight 2005, Alan Masthal		

Excel Output - Marks Example

Regression Statistics					
Multiple R	0.941388909				
R Square	0.886213078				
Adjusted R Square	0.883866956				
Standard Error	6.501151227				
Observations	100				
ANOVA					
	$d f$	SS	MS	F	Significance F
Regression	2	31929.93817	15964.97	377.7353	1.66142E-46
Residual	97	4099.701825	42.26497		
Total	99	36029.64			
	Coefficients	Standard Error	t Stat	P-value	
Intercept	-10.12689825	4.159936621	-2.43439	0.016746	
StudyTime	1.794561432	0.07275337	24.66637	1.4E-43	
Prereq	0.482269079	0.054434491	8.859623	$3.88 \mathrm{E}-14$	
© Copyright 2005, Alan Marshall					72

comparing Regressions			
Statistic	$\begin{gathered} \text { Simple } \\ 1 \text { Variable } \end{gathered}$	Multiple 2 Variable	Comment
R Square	0.7941361	0.8862131	Always Improves
Adjusted R Square	0.7920354	0.883867	Improved
Standard Error	8.6997552	6.5011512	Im proved
F Ratio	378.04264	377.73528	About the same
P -value	2.087E-35	1.661E-46	Greater Significance
Intercept	21.589566	-10.1269	Changed significantly
Study Time	1.8772964	1.7945614	Changed slightly
(t-ratio)	19.443319	24.666368	Improved
Prerequisite	na	0.4822691	Plausible
(t-ratio)		8.8596232	Significant
© Copyright 2005, Alan Marshall			YORK

Analysis
$>$ Overall, the model is useful $\left(F, R^{2}\right)$
$>$ All the t-values are significant
$>$ There has been an improvement adding the
prerequisite variable
-Copright 2005, Alan Masshal

Example

> We want to explain the variation in the number of weeks separation pay that employees receive.
$>$ We have the data partially displayed on the next slide
$>$ We believe that the weeks of separation pay is positively affected by age, years of service and level of pay

Example Data

Weeks SP	Age	Years	Pay
13	37	16	46
13	53	19	48
11	36	8	35
14	44	16	33
3	28	4	40
10	43	9	31
4	29	3	33
7	31	2	43
12	45	15	40

Excel Output

Correlations

Weeks SP				Age
Weeks SP	1			Years
Way				
Age	0.670007	1		
Years	0.830853	0.807963	1	
Pay	0.112985	0.17253	0.260971	1

> Indeed, Age and Years are highly correlated
$>$ Let's drop Age, with the highest correlation with the years and the lowest t-value, and see if the model improves

Analysis

$>$ Overall, the model is useful (F, R^{2})
> The "Years" variable is significant

- "Age" and "Pay" are not
- We should consider dropping these variables
- Age and Years are probably correlated
© Copyight 2005, Alan Marshall \quad YORK U.

Dropping Age

$\overline{\text { Regression Statistics }}$						
Multiple R 0.837787						
R Square 0.701888						
Adjusted F 0.689202						
Standard E 1.900788						
Observatio 50						
ANOVA						
	df	SS	MS	F	Signif. F	
Regressiol	2	399.8093	199.9046	55.32935	4.45E-13	
Residual	47	169.8107	3.612995			
Total	49	569.62				
	Coeff.	Std Error	t Stat	P-value		
Intercept	5.840082	1.781987	3.277286	0.001975		
Years	0.594376	0.057024	10.42334	8.26E-14		
Pay	-0.06983	0.0517	-1.35069	0.183262	YORK U	
© Copyright 2005, Alan Marshall						80

Analysis

$>$ The F ratio has improved (55 vs. 36)

- The t ratio for Years has also improved
> The t ratio for Pay has not improved
> Let's drop Pay
© Copyright 2005, Alan Marshall

Analysis

> This model is an improvement - F-ratio increased a lot (107 vs. 55)
> Years is the only variable significant in explaining the number of weeks of severance pay

To Watch For

> Variables significantly related to each other

- Correlation Function (Tools Data Analysis)
- Look for values above 0.5 or below -0.5
> Nonsensical Results
- Wrong Signs
> Weak Variables
- Magnitude of the T-ratio less than 2
- p-value greater than 0.05
© Copyright 2005, Alan Marshall

Simple Model

Regression Statistics						
Multiple R	0.830853					
R Square	0.690316					
Adjusted R Square	0.683864					
Standard Error	1.917041					
Observations	50					
ANOVA						
	df	SS	MS	F	Signif. F	
Regression	1	393.2178	393.2178	106.9967	8.27E-14	
Residual	48	176.4022	3.675045			
Total	49	569.62				
	Coeff.	Std Error	t Stat	P-value		
Intercept	3.621377	0.696703	5.197878	4.1E-06		
Years	0.574275	0.055518	10.34392	8.27E-14	YORK II	
© Copyright 2005, Alan Marshall						82

YOU LEARN STATISTICS BY DOING STATISTICS

