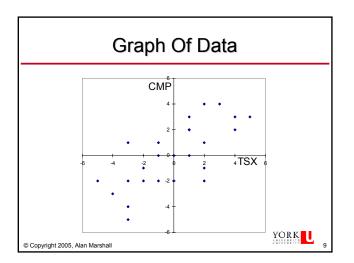
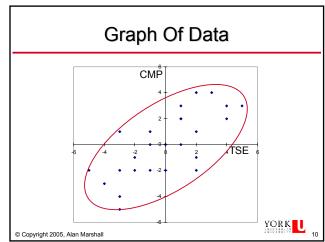
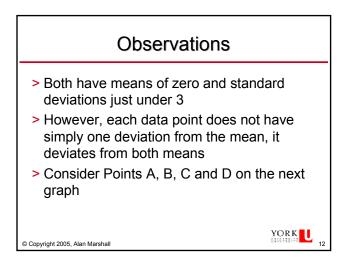


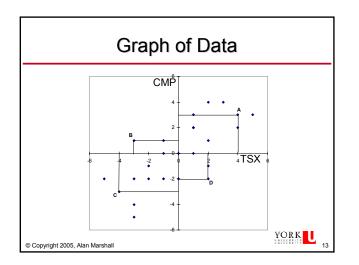
> The symbols for the estimated linear relationship are:

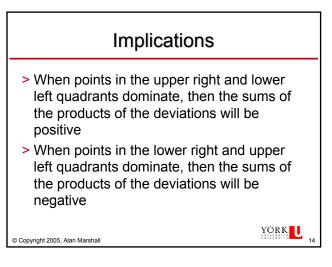
$$\hat{\mathbf{y}} = \mathbf{b}_0 + \mathbf{b}_1 \mathbf{x}$$

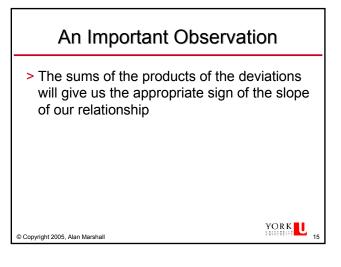

> b_1 is our estimate of the slope, β_1 > b_0 is our estimate of the intercept, β_0

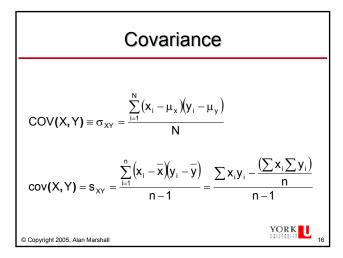

© Copyright 2005, Alan Marshall

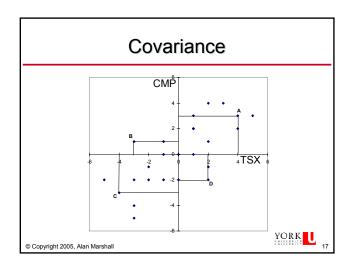

Example Data									
	TSX CMP TSX CMP TSX CMP								
	Х	у	Х	у	Х	у		I	
	3	4	-4	-3	2	4		I	
	-1	-2	-1	0	-1	1		I	
	2	-2	0	-2	4	3		I	
	4	2	1	0	-2	-1		I	
	5	3	0	0	1	2		I	
	-3	-5			-3	-4		I	
	-5	-2	-3	-2	2	1		I	
	1	2	1	3	-2	-2		I	
	2	-1						I	
© Copyright 2005, Ala	n Marshall						YORK U 7		

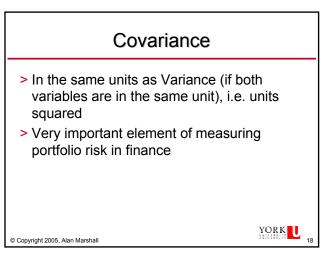

Example	
> From the data, it appears that a positive relationship may exist	
 Most of the time when the TSX is up, CMP is up 	
 Likewise, when the TSX is down, CMP is down most of the time 	
 Sometimes, they move in opposite directions 	
> Let's graph this data	
© Copyright 2005, Alan Marshall	8

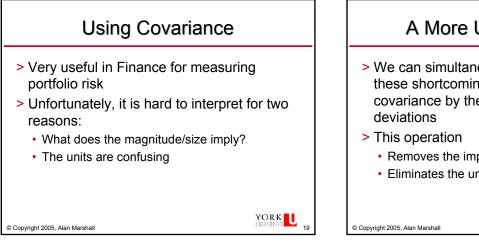


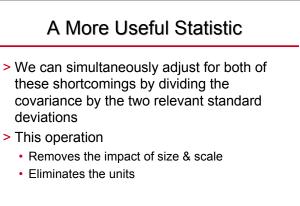


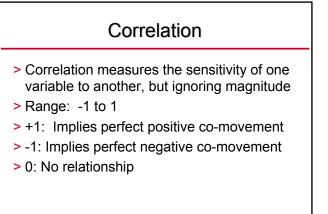

Exam	ple Sum	mary St	atistics
 The data d Let's derive data: 		1 5	related s about these
	Mean	s ²	S
TSX	0.00	7.25	2.69
CMP	0.00	6.25	2.50
© Copyright 2005, Alan Marsł	nall		YORK 11

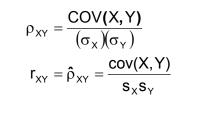




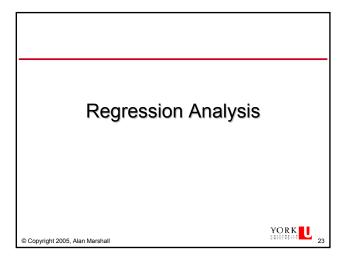


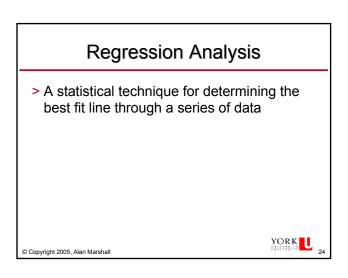






© Copyright 2005, Alan Marshall


YORK 21


Calculating Correlation

YORK

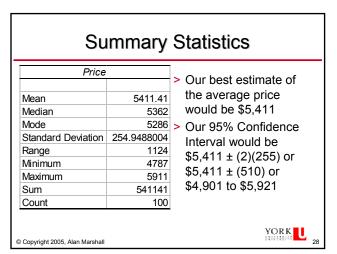
© Copyright 2005, Alan Marshall

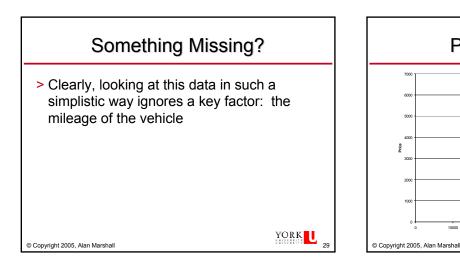
Error No line can hit all, or even most of the points -The amount we miss by is called ERROR Error does not mean mistake! It simply means the inevitable "missing" that will happen when we generalize, or try to describe things with models When we looked at the mean and variance, we called the errors deviations

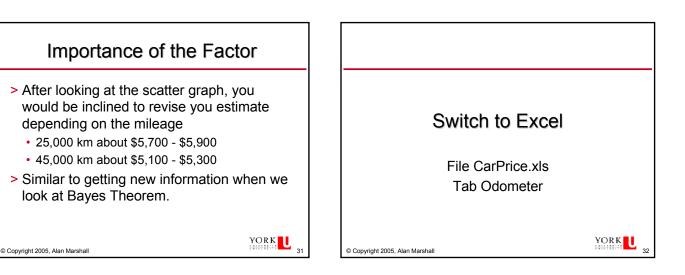
© Copyright 2005, Alan Marshall

© Copyright 2005, Alan Marshall

Suppose we are examining the sale prices of compact cars sold by rental agencies and that we have the following summary statistics:




What Regression Does

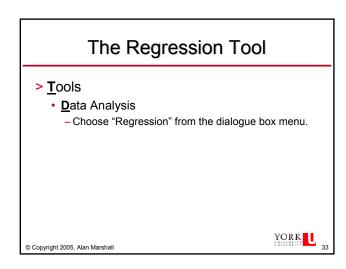

- > Regression finds the line that minimizes the amount of error, or deviation from the line
- > The mean is the statistic that has the minimum total of squared deviations
- > Likewise, the regression line is the unique line that minimizes the total of the squared errors.
- The Statistical term is "Sum of Squared Errors" or SSE

YORK

© Copyright 2005, Alan Marshal

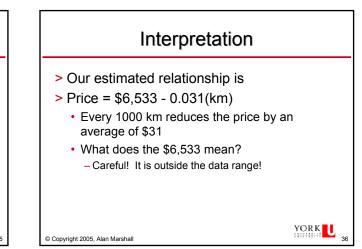
700

500


200

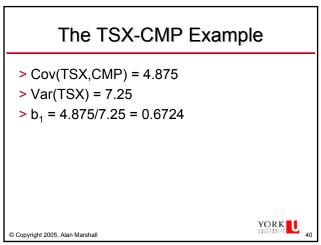
rice

Price vs. Mileage


30000

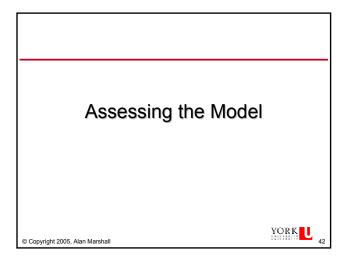
And the state of the second

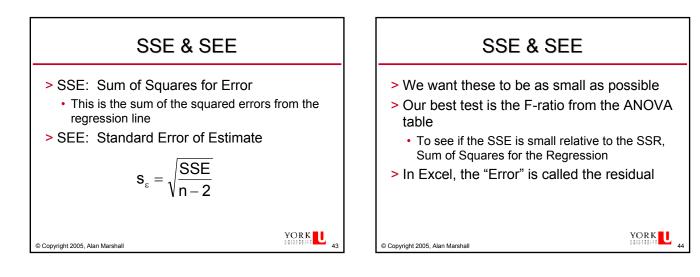
<section-header>

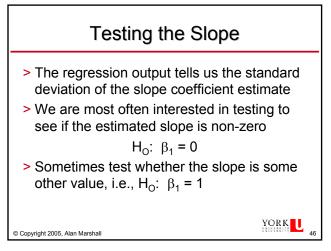

Stripped Down Output Regression Statistics Multiple R 0.806307604 0.650131952 R Square Adjusted R Square 0.64656187 Standard Error 151.5687515 Observations 100 t Stat Coefficients Standard Error P-value Intercept 6533,383035 84.51232199 77.30686935 1.22253E-89 0.002308896 -13.49465085 4.44346E-24 Odometer -0.031157739 YORK © Copyright 2005, Alan Marshall 35

	(ADI	dged)		
SUMMARY OUTPUT				
Regression St	atistics			
Multiple R	0.724211819			
R Square	0.524482759			
Adjusted R Square	0.503808096			
Standard Error	1.76102226			
Observations	25			
		Standard Error	t Stat	P-value
Intercept	0	0.001101.01	0	
X Variable 1	0.672413793	0.133502753	5.036704	4.26E-0

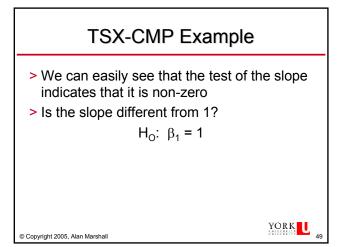
Inter	preting	the Οι	utput	
SUMMARY OUTPUT		r _{CMP} = 0 + 0.672	24(r _{TSE}) + e	
Regression St	atistics			
Multiple R	0.724211819	4	Correlatio	n
R Square	0.524482759		Coefficien	ıt
Adjusted R Square	0.503808096			
Standard Error	1.76102226			
Observations	25		Intercept	
	Coefficients	Standard Error	t Stat	P-value
Intercept	0	0.352204452	0	1
X Variable 1	0.672413793	0.133502753	5.036704	4.26E-05
		-		

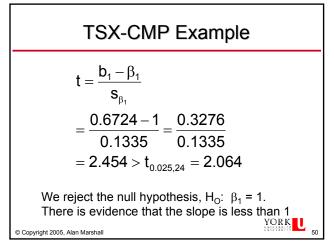

	A Useful Formula	
	$\hat{\beta}_1 \equiv b_1 = \frac{\text{cov}(x, y)}{\text{var}(x)}$	> (> \
	The estimate of the slope coefficient is the ratio of the covariance between the dependent and independent variables and the variance of the independent variable	> !
¢	© Copyright 2005, Alan Marshall 39	© Copyri



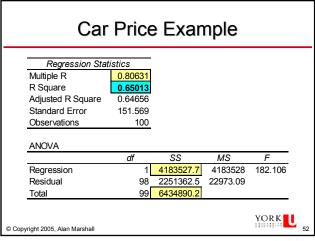

- > The probability distribution of ϵ is normal
- **>** E(ε) = 0
- $>\sigma_{\epsilon}$ is constant and independent of x, the independent variable
- The value of ε associated with any particular value of y is independent of the value of ε associated with any other value of y

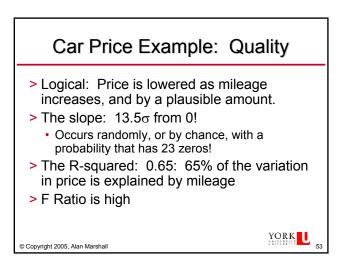
© Copyright 2005, Alan Marshall

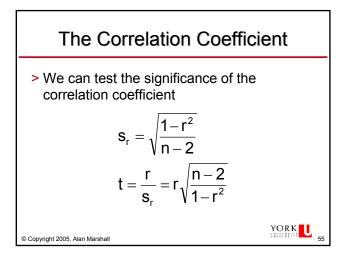


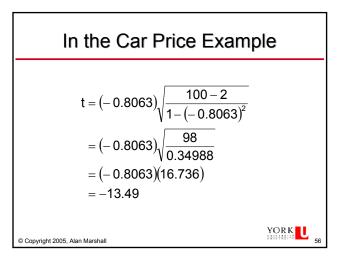

		F	Ratio		
> From	the	e Car Pr	rice exar	nple:	
	df	SS	MS	F	Significance F
Regression Residual Total	1 98 99	4183527.72 2251362.47 6434890.19		182.1056	4.44346E-24
value	e is	minute,	ery large, so we c las some	an cor	nclude
© Copyright 2005, A	an Marsi	hall			YORKU

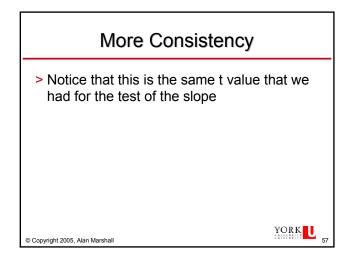


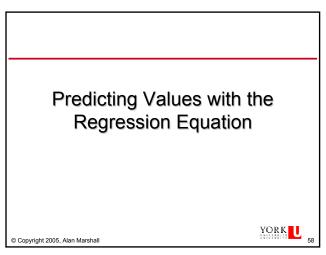

Testing the Slope						
> From t	he Car Prio	ce Exampl	е			
Intercept Odometer	Coefficients 6533.383035 -0.031157739	Standard Error 84.51232199 0.002308896	<i>t Stat</i> 77.30687 -13.4947	<i>P-value</i> 1.2225E-89 4.4435E-24		
very sr	atio is very nall, so the pe is non-z	ere is stron				
				YORK		
© Copyright 2005, Alan	Marshall			4		

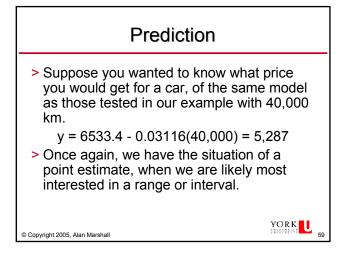

TS	X-CMF	P Exam	ple	
SUMMARY OUTPUT		r _{CMP} = 0 + 0.672	24(r _{TSE}) + e	
Demanda a Of	- 41 - 41			
Regression St				
Multiple R	0.724211819		Correlatio	
R Square	0.524482759		Coefficier	It
Adjusted R Square	0.503808096			
Standard Error	1.76102226			
Observations	25		Intercept	
	Coefficients	Standard Error	t Stat	P-value
Intercept	0	0.352204452	0	1
X Variable 1	0.672413793	0.133502753	5.036704	4.26E-05
opyright 2005, Alan Marshall			Slope	ORK

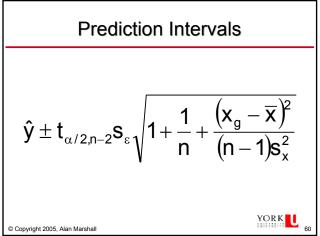


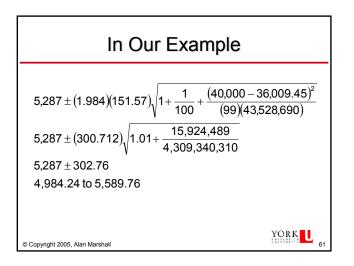


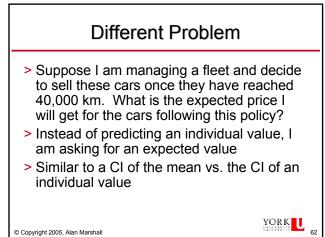


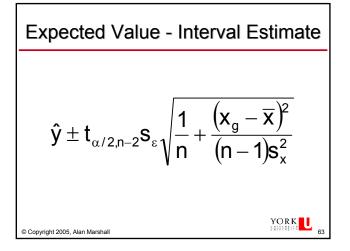


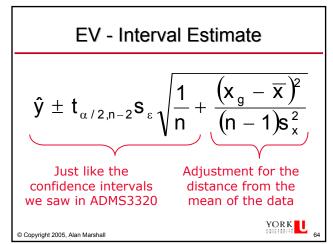

Symmetry in Testing SUMMARY OUTPUT Regression Statistics Multiple R 0.806307604 R Square 0.650131952 Adjusted R Square 0.64656187 Standard Error 151.5687515 Observations 100 ANOVA MS df SS F Significance F 4183527.721 4183527.721 182.1056015 4.44346E-24 Regression 1 Residual 2251362.469 98 22973.08642 Total 99 6434890.19 Coefficients Standard Error t Stat P-value 04.51232199 77.30686935 1.22253E-89 0.002308896 -13.49465085 4.44346E-24 Intercept 6533.383035 -0.031157739 Odometer YORK © Copyright 2005, Alan Marshall

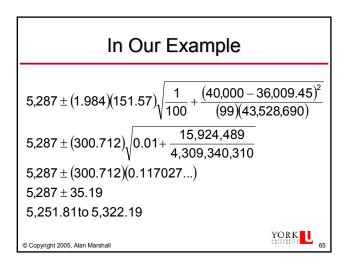


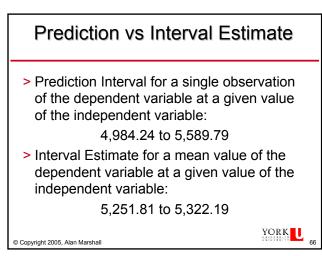


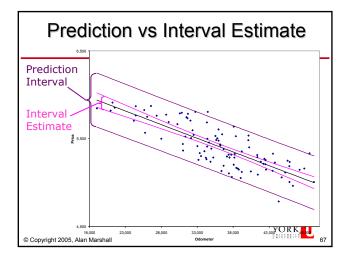


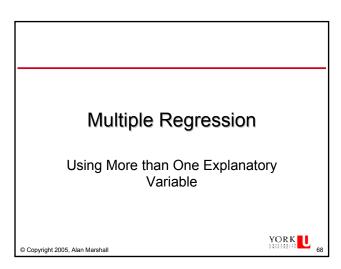


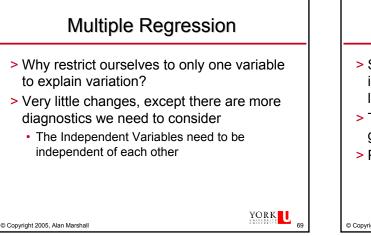








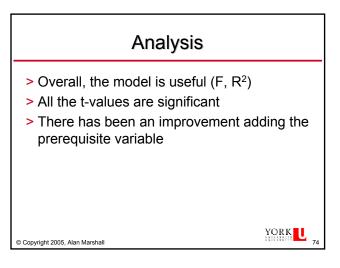




Marks Example

- Suppose that we had additional information in the marks/study time example we did last lecture
- The additional information is the numerical grade achieved in the pre-requisite course

YORK


> Partial data is on the next slide

© Copyright 2005, Alan Marshall

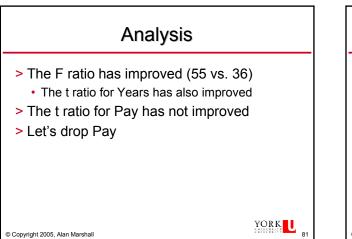
Example - Marks						
StudyTime	Prereq	Mark				
30	70	71				
5	66	30				
36	67	82				
37	89	98				
32	58	78				
23	79	73				
34	72	82				
2	55	25				
© Copyright 2005, Alan Marshall		YORK 171				

Excel Output - Marks Example					
Regression S					
Multiple R	0.941388909				
R Square	0.886213078				
Adjusted R Square					
Standard Error	6.501151227				
Observations	100				
ANOVA	df	SS	MS	F	Significance F
Regression	2	31929.93817	15964.97	377.7353	1.66142E-46
Residual	97	4099.701825	42.26497		
Total	99	36029.64			
	Coefficients	Standard Error	t Stat	P-value	
Intercept	-10.12689825	4.159936621	-2.43439	0.016746	
StudyTime	1.794561432	0.07275337	24.66637	1.4E-43	
Prereq	0.482269079	0.054434491	8.859623	3.88E-14	
© Copyright 2005, Alan M	larshall				YORK 172

Com	paring	Regr	essions
Statistic	Simple 1 Variable	Multiple 2 Variable	Comment
R Square	0.7941361	0.8862131	Always Improves
Adjusted R Square	0.7920354	0.883867	Improved
Standard Error	8.6997552	6.5011512	Improved
F Ratio P-value	378.04264 2.087E-35		About the same Greater Significance
Intercept	21.589566	-10.1269	Changed significantly
Study Time	1.8772964	1.7945614	Changed slightly
(t-ratio)	19.443319	24.666368	Improved
Prerequisite	na	0.4822691	Plausible
(t-ratio)		8.8596232	Significant
Copyright 2005, Alan Marshall	-		YORK

Example
> We want to explain the variation in the number of weeks separation pay that employees receive.
> We have the data partially displayed on the next slide
> We believe that the weeks of separation pay is positively affected by age, years of service and level of pay
© Copyright 2005, Alan Marshall 75

Example Data


Weeks SP	Age	Years	Pay
13	37	16	46
13	53	19	48
11	36	8	35
14	44	16	33
3	28	4	40
10	43	9	31
4	29	3	33
7	31	2	43
12	45	15	40
			YORK

Regression Sta	tistics					
Multiple R	0.837841					
R Square	0.701977					
Adjusted R Square	0.682541					
Standard Error	1.921049					
Observations	50					
ANOVA						
	df	SS	MS	F	Signif. F	
Regression	3	399.8602	133.2867	36.11686	3.7583E-12	
Residual	46	169.7598	3.69043			
ricordual						
Total	49	569.62				
	49 Coeff.	569.62 Std Error	t Stat	P-value		
	Coeff.					
Total	Coeff.	Std Error 2.604023		0.024387		
Total Intercept	Coeff. 6.061146	Std Error 2.604023 0.066414	2.327608	0.024387 0.906946		



Correlations					
	Weeks SP	Age	Years	Pay	
Weeks	SP 1				
Age	0.670007	1			
Years	0.830853	0.807963	1		
Pay	0.112985	0.17253	0.260971	1	
> Let's the y	ed, Age and Ye s drop Age, with years and the lo el improves	n the highe	est correlation	on with	
© Copyright 200	5, Alan Marshall			YORK U 79	

	Dro	ppin	g Ag	je		
Regression Multiple R R Square Adjusted R Standard E Observatio	0.837787 0.701888 0.689202 1.900788	- - -				
ANOVA					<u></u>	
	df	SS	MS	F	Signif. F	
Regression		399.8093		55.32935	4.45E-13	
Residual Total	47	169.8107 569.62	3.612995			
Total	49	009.02				
	Coeff.	Std Error	t Stat	P-value		
Intercept	5.840082	1.781987	3.277286	0.001975		
Years	0.594376	0.057024	10.42334	8.26E-14		
Pay	-0.06983	0.0517	-1.35069	0.183262	YORK	
© Copyright 2005, Alan Marsha	di .				ANALYSIS IT A	80

Simple Model						
Regression Sta	tistics					
Multiple R	0.830853					
R Square	0.690316					
Adjusted R Square	0.683864					
Standard Error	1.917041					
Observations	50					
ANOVA						
	df	SS	MS	F	Signif. F	
Regression	1	393.2178	393.2178	106.9967	8.27E-14	
Residual	48	176.4022	3.675045			
Total	49	569.62				
	Coeff.	Std Error	t Stat	P-value		
Intercept	3.621377	0.696703	5.197878	4.1E-06		
Years	0.574275	0.055518	10.34392	8.27E-14	YORK	
right 2005, Alan Marshall						82

YOU LEARN STATISTICS BY DOING STATISTICS

© Copyright 2005, Alan Marshall

Г