

3

5

In this chapter we will talk about ...

- Copernicus
- Kepler
- Newton

2

4

6

7

9

Sidereal and Synodic Orbital

periods

- During time S earth covers (360deg/E)S
- Inferior planet has covered (360deg/P)S
- => (360deg/P)S = (360deg/E)S +360deg
- For Inferior Planets $1 / \mathrm{P}=1 / \mathrm{E}+1 / \mathrm{S}$
- Similarly it can be shown that:
- For Superior Planets $1 / \mathrm{P}=1 / \mathrm{E}-1 / \mathrm{S}$

P = Sidereal Period of the planet
S = Synodic Period of planet
E = Earth's Sidereal Period (1 year)

Nicolaus Copernicus devised the first comprehensive heliocentric model

- Copernicus' s heliocentric (Sun-centered) theory simplified the general explanation of planetary motions
- In a heliocentric system, the Earth is one of the planets orbiting the Sun
- The sidereal period of a planet, its true orbital period, is measured with respect to the stars

1473-1543
8

A planet' s synodic period, S , is measured with respect to the Earth and the Sun (for example, from one opposition to the next)

A planets sidereal period, P, is measured with respect to stars. In one sidereal period the planet completes a 360 deg orbit.

10

Example for Mercury (inferior planet)

- $1 / \mathrm{P}=1 / \mathrm{E}+1 / \mathrm{S}$
- 1/P = 1/365d + 1/116
- 1/P = $0.01136041 / \mathrm{d}$
- $\mathrm{P}=88 \mathrm{~d}$

table $\mathbf{4}^{\mathbf{- 1}}$	Synodic and Sidereal Periods of the Planets	
Planet	Synodic period	Sidereal period
Mercury	116 days	88 days
Venus	584 days	225 days
Earth	-	1.0 year
Mars	780 days	1.9 years
Jupiter	399 days	11.9 years
Saturn	378 days	29.5 years
Uranus	370 days	84.1 years
Neptune	368 days	164.9 years
Pluto	367 days	248.6 years

De revolutionibus orbium coelestium

Johannes Kepler proposed elliptical paths for the planets about the Sun

- Using data collected by Tycho Brahe, Kepler deduced three laws of planetary motion:

1. the orbits are ellipses
2. a planet's speed varies as it moves around its elliptical orbit
3. the orbital period of a planet is related to the size of its orbit

15

17

14

16

Kepler's Second Law

18

19

21

$\alpha=58^{\circ}$

$\alpha=24^{\circ}$

$\alpha=42^{\circ}$

$\alpha=15^{\circ}$

$\alpha=10^{\circ}$
There is a correlation between the phases of Venus and
the planet's angular distance from the Sun

20

Galileo' s discoveries with a telescope strongly supported a heliocentric model

22

- One of Galileo' s most important discoveries with the telescope was that Venus exhibits phases like those of the Moon
- Galileo also noticed that the apparent size of Venus as seen through his telescope was related to the planet's phase
- Venus appears small at gibbous phase and largest at crescent phase

24

25

Mass vs Weight

- Mass is an intrinsic quantity and for a given object is invariant of position. It is measured in kg .
- Weight by contrast is the 'response' of mass to the local gravitational field. It is a force and measured in newtons.
- Thus while you would have the same mass on the earth and its Moon, your weight is different.
- W (eight) $=\mathrm{m}$ (ass) $\times \mathrm{g}$ (ravitational acceleration)

27

Orbits may be any of a family of curves called conic sections

Circle

Ellipse

Parabola

Energy

(measured in Joules, J)

- Kinetic energy refers to the energy a body of mass m has due to its speed v : $\quad E_{\text {kin }}=\frac{1}{2}-m v^{2}$.
- For a rotating body: $E_{k i n}={ }_{2}^{1} \pm \omega^{2}$

$$
\text { with } I \text {, moment of inertia and } \mathrm{L}=\mid \omega \text {, angular momentum and } \omega \text { : angular velocity. }
$$

- Potential energy is energy due to the position of m a distance r away from another body of mass M

$$
E_{p o t}=-G^{M m} \frac{m}{r}
$$

- Total energy, $E_{\text {tot }}$, is the sum of the kinetic and potential energies;

$$
E_{\text {tot }}=E_{\mathrm{kin}}+E_{\mathrm{pot}}
$$

[^0]
Escape velocity

- The velocity that must be acquired by a body to just escape, i.e., to have zero total energy, is called the escape velocity. By setting $E_{\mathrm{k}}+E_{\mathrm{p}}=0$, we find:

$$
v_{\text {escape }}^{2}=\frac{2 G M}{r}
$$

31

Kepler's Third Law derived by Newton

$$
P^{2}=\frac{4 \pi^{2}}{G(M+m)} a^{3}
$$

P = Sidereal orbital period (seconds, s)
$\mathrm{a}=$ Semi-major axis planet orbit (meters, m)
$\mathrm{M}, \mathrm{m}=$ mass of objects (kilograms, kg)
$\mathrm{G}=$ Gravitational constant : $6.673 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$

$$
\text { For } M \gg m: \quad P^{2}=\frac{4 \pi^{2}}{c M} a^{3}
$$

33

Example: What is your weight on the Moon?

weight-force

Force=mass x acceleration
$\mathrm{F}=\mathrm{ma}$
Force is also the gravitational force
$\mathrm{F}=\mathrm{GMm} / \mathrm{r}^{2}$
We need the acceleration, a , for the Moon to calculate your weight on the Moon $\mathrm{ma}=\mathrm{GMm} / \mathrm{r}^{2}$
$\mathrm{a}=\mathrm{GM} / \mathrm{r}^{2}$
$\mathrm{M}=7.345 \times 10^{22} \mathrm{~kg}$ (mass of Moon)
$\mathrm{r}=1737 \mathrm{~km}$ (radius of Moon)
$\mathrm{a}=6.673 \times 10^{-11} \times 7.345 \times 10^{22}\left(1.737 \times 10^{6}\right)^{2}$
$a=1.624 \mathrm{~m} / \mathrm{s}^{2}$ (acceleration on the Moon)
If your mass is 100 kg then your weight on the Moon is
$\mathrm{F}=100 \times 1.624=162.4 \mathrm{~N}$
On Earth the acceleration is $9.81 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{F}=100 \times 9.81=981 \mathrm{~N}$

Velocity

- A body of mass m in a circular orbit about a (much) more massive body of mass orbits at a constant speed or the circular velocity, v_{c} where

$$
v_{c}^{2}=\frac{G M}{r}
$$

\square
(This is derived by equating the gravitational force with the centrifugal force, $m v^{2} / r$).

- Note that: $v_{\text {escape }}^{2}=2 v_{c}^{2}$.

32

Example: What is the mass of the Sun?

$M+m=4 \pi^{2} a^{3} / G P^{2}$

$$
\begin{aligned}
& =4 \pi^{2}\left(1.510^{11}\right)^{3} /\left(6.67310^{-11}(365.24 \cdot 24 \cdot 60 \cdot 60)^{2}\right) \\
& =2.0 \cdot 10^{30} \mathrm{~kg}
\end{aligned}
$$

Since mass, m, of Earth is negligible, this is the mass of the sun, $M_{\text {sun }}=M+m \cong M$.

34

Example: What is the escape velocity for Earth?
V^{2} escape $=2 \mathrm{GM} / \mathrm{r}$
$\mathrm{M}=5.972 \times 10^{24} \mathrm{~kg}$ (mass of Earth)
r=6371 km (radius of Earth)
v^{2} escape $=2 \times 6.673 \times 10^{-11} \times 5.972 \times 10^{24} / 6.371 \times 10^{3}=11185 \mathrm{~m} / \mathrm{s}$
$V_{\text {escape }}=11185 \mathrm{~m} / \mathrm{s}=11.185 \mathrm{~km} / \mathrm{s}$

37

Frontiers yet to be discovered

1) Why is the inertial mass in $F=m a$ equal to the gravitational mass in $\mathrm{F}=\mathrm{GmM} / \mathrm{r}^{2}$?
2) Newton' s law of gravitation is not quite accurate as can be shown with precision measurements.

38

39

[^0]: A body whose total energy is <0, orbits a more massive body in a bound, elliptical orbit
 ($e<1$).
 A body whose total energy is >0, is in an unbound, hyperbolic orbit ($e>1$) and escapes
 A body whose total energy is exactly 0 just escapes to infinity in a parabolic orbit ($e=1$)

