

1

3

5

2

4

6

7

9

Average surface temperature of planet

$$
\begin{aligned}
& P_{\text {abs }}=\left(L / 4 \pi d^{2}\right) \times \pi r_{p}{ }^{2}(1 \text {-albedo }) \\
& P_{\text {em }}=4 \pi r_{p}^{2} \sigma T_{p}^{4} \\
& \text { If no atmosphere then for thermal equilibrium: } \\
& P_{\text {abs }}=P_{\text {em }} \\
& T_{p}=\left[L\left(4 \pi d^{2}\right) \times(1 \text {-albedo }) /(4 \sigma)\right]^{1 / 4}
\end{aligned}
$$

Example for Earth:

$\mathrm{L}=3.86 \times 10^{26} \mathrm{~W}, \mathrm{~d}=1.5 \times 10^{11} \mathrm{~m}$, albedo $=0.37$, $\sigma=5.67 \times 10^{-8} \mathrm{~J} \mathrm{~m}^{-2} \mathrm{~K}^{-4} \mathrm{~s}^{-1}$
$\mathrm{T}_{\mathrm{p}}=247 \mathrm{~K}$

With average $T=290 \mathrm{~K} \rightarrow 43 \mathrm{~K}$ due to greenhouse effect

8

10

12

$\underset{\substack{\text { Figure } 6.7 n \\ \text { Discovering the }}}{ }$
-200sw.t.freeman and Compmeny

13

15

17

14

16

19

21

20

22

24

25

27

A Microscopic Lunar Crater

This photograph, made with a microscope, shows tiny microcraters less than 1 mm across on a piece of Moon rock.

26

(b) An incoming meteoroid, (c) upon impact, is pulverized and the surface explodes outward and downward. (d) After the impact, the ground rebounds, creating the central peak and causing the crater walls to collapse. The lighter region is the ejecta blanket.

31

33

The Far Side of the Moon

Using a laser mounted on the Lunar Reconnaissance Orbiter, this detailed image of the lunar far side was made in 2010. Going by the colors of the rainbow, violet indicates lowest terrain, while red indicates highest.

34

37

39

Seismic experiments revealed that the main regions of the Moon's interior mimic those of Earth, but in different proportions.

Water ice may exist in the polar craters, where the energy received from the Sun is insufficient to melt it.

38

40

The Moon probably formed from debris cast into space when a huge planetesimal struck the proto-Earth

The collisional-ejection theory holds that the proto-Earth was struck by a Mars-sized protoplanet and that debris from this collision coalesced to form the Moon
This theory successfully explains most properties of the Moon
The Moon was molten in its early stages, and the anorthositic crust solidified from low-density magma that floated to the lunar surface The mare basins were created later by the impact of planetesimals and filled with lava from the lunar interior

43

45

As the Moon's interior shrank, the surface settled irregularly, creating long lines of cliffs called scarps.

46

Why do we see only one side of the moon from earth?

Tidal forces cause the moon to be in synchronous rotation.

49

51

53

50

52

54

55

57

Mercury has an iron core and a surprising magnetic field

- Most iron-rich (relative to mass) planet in the solar system with a core that is 75% of the diameter
- The earth's core is 55% of its diameter and the moon's core is 20% of its diameter
- Among highest density for the planets
- Weak magnetic field indicating part of the core is liquid
- Magnetic field causes a magnetosphere similar to Earth's but weaker

56

58

60

61

63

65

62

64

66

67

69


```
Venus has a hot, dense atmosphere and highly reflective corrosive cloud layers
```

- Spacecraft measurements reveal that 96.5% of the Venusian atmosphere is carbon dioxide
- Most of the balance of the atmosphere is nitrogen.
- Venus's clouds consist of droplets of concentrated droplets of conic acid.
- The surface pressure on Venus is 90 atm, and the surface temperature is 460° C
- Both temperature and pressure decrease as altitude increases

68

Image from Venera 13

Color-corrected image
Figure 7 -13ab

70

72

73

75

The Martian surface has numerous craters, several huge volcanoes, a vast rift valley, and dried-up riverbeds- but no canals.
Martian volcanoes and the Valles Marineris rift valley were formed by upwelling plumes of magma in the mantle.

74

76

78

79

81

For reasons that are not understood, the chemical composition of ancient Martian lava is different from that of more recent lava

- Mars has no planet wide magnetic field at present but may have had one in the ancient past

80

82

85

87

86

88

90

91

93

95

92

94

96

97

99

Perseverance will look for microbial life from 3 to 4 Bill. years ago

98

100

103

105

What is the escape velocity for Mars?
v^{2} escape $=2 \mathrm{GM} / \mathrm{r}$
$\mathrm{M}=6.418 \times 10^{23} \mathrm{~kg}$ (mass of Mars)
$\mathrm{r}=3397 \mathrm{~km}$ (radius of Mars)
v^{2} escape $=2 \times 6.673 \times 10^{-11} \times 6.418 \times 10^{23} /\left(3.397 \times 10^{6}\right)=25.214 \times 10^{6}(\mathrm{~m} / \mathrm{s})^{2}$ $V_{\text {escape }}=5021 \mathrm{~m} / \mathrm{s}=5.021 \mathrm{~km} / \mathrm{s}$

The two Martian moons resemble asteroids

- Mars has two small, football-shaped satellites that move in orbits close to the surface of the planet
- They may be captured asteroids or may have formed in orbit around Mars out of solar system debris

104

Why is there no H_{2} in the atmosphere of the inner planets?
$\mathrm{E}_{\mathrm{k}}=1 / 2 \mathrm{mv}^{2}$ J Kinetic energy due to motion with velocity, v $\mathrm{E}_{\mathrm{k}}=3 / 2 \mathrm{kT}$ J Thermal kinetic energy of gas, atoms or molecules $\mathrm{v}=(3 \mathrm{kT} / \mathrm{m})^{1 / 2}$ $\mathrm{~m} / \mathrm{s}$ Average speed of a gas, atom or molecule $\mathrm{k}=1.38 \times 10^{-23}$ $\mathrm{~J} / \mathrm{K}$ Boltzmann's constant $\mathrm{m}=\mathcal{M} \times \mathrm{amu}$ kg mass of atom or molecule \mathcal{M} M $\mathrm{amu}=1.66 \times 10^{-27} \mathrm{~kg}$ mass number atomic mass unit
Example for Mars: T=220K, $\quad \mathrm{H}_{2}: \mathcal{M}=2, \mathrm{~m}=2 \times 1.66 \times 10^{-27} \mathrm{~kg}$ $v=\left[\left(3 \times 1.38 \times 10^{-23} \times 220 /\left(2 \times 1.66 \times 10^{-27}\right)\right]^{1 / 2}=1656 \mathrm{~m} / \mathrm{s}\right.$ A planet or moon can retain a gas if the escape speed is at least 6 times greater than the average velocity of the gas.

106

Why is there no H_{2} in the atmosphere of the inner planets?

$\mathrm{E}_{\mathrm{k}}=1 / 2 \mathrm{mv} \mathrm{v}^{2}$	Kinetic energy due to motion with velocity, v
$\mathrm{E}_{\mathrm{k}}=3 / 2 \mathrm{kT}$, J	Thermal kinetic energy of gas, atoms or molecules
$\mathrm{v}=(3 \mathrm{kT} / \mathrm{m})^{1 / 2} \mathrm{~m} / \mathrm{s}$	Average speed of a gas, atom or molecule
$\mathrm{k}=1.38 \times 10^{-23} \quad \mathrm{~J} / \mathrm{K}$	Boltzmann's constant
$\mathrm{m}=\mathcal{M} \times \mathrm{amu} \quad \mathrm{kg}$	mass of atom or molecule
\mathcal{M}	mass number
$\mathrm{amu}=1.66 \times 10^{-27} \mathrm{~kg}$	atomic mass unit
Example for Mars: T=220K, $\quad \mathrm{H}_{2}: \mathcal{M}=2, \mathrm{~m}=2 \times 1.66 \times 10^{-27} \mathrm{~kg}$ $\mathrm{v}=\left[\left(3 \times 1.38 \times 10^{-23} \times 220 /\left(2 \times 1.66 \times 10^{-27}\right)\right]^{1 / 2}=1656 \mathrm{~m} / \mathrm{s}\right.$	
A planet or moon can retain a gas if the escape speed is at least 6 times greater than the average velocity of the gas.	
$\mathrm{V}_{\text {esc }}=5.02 \mathrm{~km} / \mathrm{s}=3.0 \mathrm{xv} \rightarrow \mathrm{H}_{2}$ cannot be retained by Mars.	

