

1

3

5

2

4

6

7

9

If you draw lines from your eye to each of two stars, the angle between these lines is the angular distance between these two stars

Big Picture of the Evolution of the Universe

This figure shows our current thinking about the evolution of star and galaxy formation in the early universe, as well as the present-day acceleration of the universe' s expansion.

8

In tihis chapter you will discover...

- Essential angle, size and distance units
- how astronomers organize the night sky to help them locate objects in it.
- that Earth's spin on its axis causes day and night.
- how the tilt of Earth's axis of rotation and Earth's motion around the Sun combine to create the seasons.
- that the Moon's orbit around Earth creates the phases of the Moon.
- what causes both lunar and solar eclipses.
- the scales of the universe.

13

15

17

14

Astronornical distances are ofien measured in astronornical urits, parsecs, or lightityears

- Astronomical Unit (AU)
\checkmark One AU is the average distance between Earth and the Sun
$\checkmark 1.496 \times 10^{8} \mathrm{~km}$ or 92.96 million miles
- Light Year (Iy)

One ly is the distance light can travel in one year at a speed of about $3 \times 10^{5} \mathrm{~km} / \mathrm{s}$ or $186,000 \mathrm{miles} / \mathrm{s}$
, $9.46 \times 10^{12} \mathrm{~km}$ or $63,240 \mathrm{AU}$

- Parsec (pc)
\checkmark the distance at which 1 AU subtends an angle of 1
arcsec or the distance from which Earth would appear to be one arcsecond from the Sun
$\lrcorner 1 p c=3.09 \times 10^{13} \mathrm{~km}=3.26 \mathrm{ly}$

16

18

19

21

20

22

26

27

29

31

28

30

32

33

35

37

Precession of the equirnoxes rnotion of the equinoxes along the ecliptic (plane of the orit of Earth)

34

36

38

39

41

43

40

42

44

46

This precession causes the position of the North Celestial Pole to slowly change over ine. Joday, fie Norin Celestia Pole is near the siar Polaris, wnich we call the Norin Siar. Fowever, in 3000 BC , Thubar, was close to the North Celestial Pole and in 14,000 $A D$, Vega will be in this location.
Precession also gauses bie verral equinex io move ale vernal equirox to move aliong Ine celesial squalior by 60 in 20, ,00 years. That means tian the RA and dec cianges
slowiy due to precession slowiy due to precession. In astionomy we therefore need to refer to al date for RA and dec. That date is the stiart of the year 2000. The coordinates are then in 2000 .

49

Astronomical observations led to the development of the modern calendar

- Day is based on Earth's rotation - Monitn is based on the Junar cycle - Year is based on Earth's orbit

50

52

53

Dififerent types of "year"

- Calenidar year integer number of mean solar days, (365 or 366)
- Sidereal year time for the sun to return to the same position with respect to the stars
(time of one 360 deg orbit of the earth) around the sun).
- Tropical year: time for the sun to return to the vernal equinox.

1 sidereal year $=365.2564$ mean solar days 1 tropical year $=365.2422$ mean solar days

57

Two more types of angle and time

- Hour anigle (HA) of a celestial object is the angle measured from the meridian on which the object is situated to the (observer's) local meridian. HA is negative if object is east of observer, positive if it is west of observer.
- Local Sicdereal Tirne (LST) is the right ascension of an observer s local meridian.
LST = RA (object) i HA
(objecti)
HA.(object) indicates how much sidereal tirne has passed since the object was on the local meridian

54

Calenclars

- Caesar intiroduced the 365.25 days calendar and thus the Leap Year (an extira day, February 29, every year djivisible by 4).
- However, this is $1 \mathrm{f}^{\mathrm{m}} 14^{4}$ longer than a (iropical) year. This accumulates to 3 days in 4 centuries error.
- To correct, October 4 was followed by October 15 , in 1562 and the century rule was invoked (Gregorian calendar).
, Leap year: if year is divisible by 4, except it is a centennial year. However if the centennial year is divisible by 400, then it is also a leap year. $\rightarrow>P_{\text {eartin, orbir }} 365.2422$ mean solar days.

65

66

67

