

-	-	١
-	-	ł
-	-	١

4

•The energy released in a nuclear reaction corresponds to a slight reduction of mass according to

•Thermonuclear fusion occurs only at very high temperatures; for example, hydrogen fusion occurs only at temperatures in excess of about 10⁷ K

•In the Sun, fusion occurs only in the dense, hot core

	Fusion reaction in Sun
p+p	→d+e⁺+v+ 2γ
d+p	→³He + γ
³ He+ ³ H	He →⁴He+2p
4p	→ ⁴He + 2v's + γ's
m(4p)	= 6.693 x 10 ⁻²⁷ kg
m(4He)= 6.645 x10 ⁻²⁷ kg
E=mc ²	0.048 x10 ⁻²⁷ kg ~0.7% of mass converted into energy
E=0.04	48 x 10 ⁻²⁷ x (3.0x10 ⁸) ² J
E =4.3	3 x 10 ⁻¹² J

How much mass does the Sun really loose per second? $L_{sun}{=}3.9 \ x \ 10^{26} \ W$ $dE_{sun}/dt{=}\ L_{sun}$

 $dM_{sun}/dt = dE_{sun} / dt \ge 1/c^2$

Element	Number of atoms (percent)	Percent of total mass
Hydrogen	91.2	71.0
Helium	8.7	27.1
Oxygen	0.078	0.97
Carbon	0.043	0.40
Nitrogen	0.0088	0.096
Silicon	0.0045	0.099
Magnesium	0.0038	0.076
Neon	0.0035	0.058
Iron	0.030	0.014
Sulfur	0.015	0.040

In this narrow transition region between the chromosphere and corona, the temperature rises abruptly by about a factor of 100.

Corona

104

105

10

Temperature (K)-

10⁴

Chromospher

103 Height above photosphere (km) -

10²

Figure 10-6c Discovering the Universe, Eighth Edition © 2008 W.H. Freeman and Company

25

28

