

Parallax of a nearby star

Parallax of an even closer star

Careful measurements of the parallaxes of stars reveal their distances

Relation between a star's distance and its parallax

$$
d=\frac{1}{p}
$$

$d=$ distance to a star, in parsecs
$p=$ parallax angle of that star, in arcseconds

- Distances to the nearer stars can be determined by parallax, the apparent shift of a star against the background stars observed as the Earth moves along its orbit
- Parallax measurements made from orbit, above the blurring effects of the atmosphere, are much more accurate than those made with Earth-based telescopes
- Stellar parallaxes can only be measured for stars within a few hundred parsecs

If a star's distance is known, its luminosity can be determined from its brightness

Inverse-square law relating apparent brightness and luminosity

$$
b=\frac{L}{4 \pi d^{2}}
$$

```
b= apparent brightness of a star's light, in W/m
L = star's luminosity, in W
d= distance to star, in meters
```

- A star's luminosity (total power of light output), apparent brightness, and distance from the Earth are related by the inverse-square law
- If any two of these quantities are known, the third can be calculated

Determining a star's luminosity from its apparent brightness

$$
\frac{L}{\mathrm{~L}_{\odot}}=\left(\frac{d}{\mathrm{~d}_{\odot}}\right)^{2} \frac{b}{\mathrm{~b}_{\odot}}
$$

$L / L_{\odot}=$ ratio of the star's luminosity to the Sun's luminosity
$d / \mathrm{d}_{\odot}=$ ratio of the star's distance to the Earth-Sun distance
$b / b_{\odot}=$ ratio of the star's apparent brightness to the Sun's apparent brightness

Astronomers often use the magnitude scale to denote brightness

Introduced by Hipparchus 129 BC
The apparent magnitude, m, is an alternative quantity that measures a star's apparent brightness

A $1^{\text {st }}$ mag star is 100 times brighter than a $6^{\text {th }}$ mag star (definition).

Then a $1^{\text {st }}$ mag star is $\sqrt[5]{100}=2.512$ times brighter than a $2^{\text {nd }}$ mag star and (2.512) ${ }^{2}$ times brighter than a $3^{\text {rd }}$ mag star and ...

$$
m_{2}-m_{1}=2.5 \log \left(b_{1} / b_{2}\right)
$$

The absolute magnitude, M , of a star is the apparent magnitude it would have if viewed from a distance of 10 pc

$$
m-M=5 \log (d)-5
$$

M of Sun?
$M=-5 \log (d)+5+m$
$M=-5 \log (1 / 206265)+5+(-26.7)$
$M=4.8$

\longleftarrow Sun (-26.7)

ఒ Full moon (-12.6)
\longleftarrow Venus (at brightest) (-4.4)
\longleftarrow Sirius (brightest star) (-1.4)
\longleftarrow Naked eye limit (+6.0)
\longleftarrow Binocular limit (+10.0)
\longleftarrow Pluto (+15.1)

Large telescope (visual limit) (+21.0)

Hubble Space Telescope and large Earth-
based telescopes (photographic limit) (+30.0)
Some apparent magnitudes

Distance Modulus

- Consider a star with apparent magnitude, m, and absolute magnitude, M. Then
- $m-M=5 \log (d)-5$
- Note that d is in pc
- Further, if $\mathrm{d}=10 \mathrm{pc}$ then

$$
\begin{aligned}
m-M & =5 \log (10)-5 \\
m-M & =5-5 \\
& =0
\end{aligned}
$$

- $\mathrm{m}-\mathrm{M}$ is called the distance modulus

What would be the apparent magnitude of the Sun at $\mathrm{d}=120 \mathrm{pc}$?

$$
\begin{aligned}
m-M & =5 \log (d)-5 \\
m & =5 \log (120)-5+4.8 \\
m & =10.2
\end{aligned}
$$

Apparent magnitudes of stars in the Pleiades

$$
\mathrm{d}=120 \mathrm{pc}
$$

A star's color depends on its surface temperature

The spectra of stars reveal their chemical compositions as well as surface temperatures

- Stars are classified
 into spectral types (subdivisions of the spectral classes O, B, A, F, G, K, and M), based on the major patterns of spectral lines in their spectra

Spectra of stars with different T

Relationship between a star's luminosity, radius, and surface temperature

$$
L=4 \pi R^{2} \sigma T^{4}
$$

$L=$ star's luminosity, in watts
$R=$ star's radius, in meters
$\sigma=$ Stefan-Boltzmann constant $=5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4}$
$T=$ star's surface temperature, in kelvins

Stars come in a wide variety of sizes

Finding Key Properties of Nearby Stars

Hertzsprung-Russell (H-R) diagrams reveal the different kinds of stars

- The H-R diagram is a graph plotting the absolute magnitudes of stars against their spectral types-or, equivalently, their luminosities against surface temperatures
- The positions on the H-R diagram of most stars are along the main sequence, a band that extends from high luminosity and high surface temperature to low luminosity and low surface temperature

The sizes of stars on an H-R diagram

$L=4 \pi R^{2} \sigma T^{4}$
$R=\left[L /\left(4 \pi \sigma T^{4}\right)\right]^{1 / 2}$
On the H-R diagram, giant and supergiant stars lie above the main sequence, while white dwarfs are below the main sequence

(a) A supergiant star has a low-density, low-pressure atmosphere:
its spectrum has narrow absorption lines

(b) A main-sequence star has a denser, higher-pressure atmosphere: its spectrum has broad absorption lines
By carefully examining a star's spectral lines, astronomers can determine whether that star is a main-sequence star, giant, supergiant, or white dwarf

Using the H-R diagram

 and the inverse square law, the star'sluminosity and distance can be found without measuring its stellar parallax

Surface temperature, T

- Ancient peoples looked at the stars and imagined groupings made pictures in the sky and gave them meaning.
- But they were on the wrong track.
- Today we look at the colours and get the surface temperature and the energy flux per m^{2}.
- With the parallax and apparent brightness we get the luminosity and the radius.
- The life and death of stars

Orion

The center of mass of the system of two children is nearer to the more

A "binary system" of two children

A binary star system

Binary star systems provide crucial information about stellar masses

- Binary stars are important because they allow astronomers to determine the masses of the two stars in a binary system
- The masses can be computed from measurements of the orbital period and orbital dimensions of the system

$$
M_{1}+M_{2}=\frac{a^{3}}{p^{2}}
$$

M_{1}, M_{2} = masses of two stars in binary system, in solar masses $a=$ semimajor axis of one star's orbit around the other, in AU
$P=$ orbital period, in years

$L / L_{\text {sol }}=\left(M / M_{\text {sol }}\right)^{3.5}$
With: $\quad E / E_{\text {sol }}=L t /\left(L_{\text {sol }} t_{\text {sol }}\right)=\mathrm{fMc}^{2} /\left(\mathrm{fM}_{\text {sol }} \mathrm{C}^{2}\right)$
Lifetime on main sequence: $\left.\mathrm{t} / \mathrm{t}_{\text {sol }}=\mathrm{M} / \mathrm{M}_{\text {sol }}\right)^{-2.5}$
f: fraction of mass converted into energy

$\mathrm{L} / \mathrm{L}_{\text {sol }}=\left(\mathrm{M} / \mathrm{M}_{\text {sol }}\right)^{3.5}$ Lifetime on main sequence: $\left.\mathrm{t} / \mathrm{t}_{\text {sol }}=\mathrm{M} / \mathrm{M}_{\text {sol }}\right)^{-2.5}$

$\mathrm{E} / \mathrm{E}_{\text {sol }}=\mathrm{Lt} /\left(\mathrm{L}_{\text {sol }} \mathrm{t}_{\text {sol }}\right)=\mathrm{fMc} \mathrm{C}^{2} /\left(\mathrm{fM}_{\text {sol }} \mathrm{C}^{2}\right)$

