

2.Orbital aspects of Satellite Communications

2.1 Orbits

Satellite Orbits overview

Three basic satellite orbits

Advantages and disadvantages

- Satellites in geostationary orbit:
- Advantages:
- Satellite remains stationary, no tracking equipment for earth station necessary
- Satellite is visible 24 h per day
- Large coverage area: large number of earth stations can communicate
- Almost no Doppler shift - keeps electronics simple
- Disadvantages:
- Latitudes north of 81.5 deg are not covered
- Great distance - received signal is weak
- Launch cost higher than for low altitude orbits
- Only one geostationary orbit is possible
-
-
- Satellites in inclined orbits:
- Molniya series $\mathrm{i}=65$ deg, $\mathrm{P}=12 \mathrm{~h}$ - provides communication services to the northern regions of Russia
- Military satellites
- Global Navigation Satellite Systems, e.g. GPS satellites, $\mathrm{i}=63 \mathrm{deg}, \mathrm{P}=12 \mathrm{~h}, 3$ orbital planes oriented at 120 deg angles w.r.t. each other, 3×8 satellites, at least 6 satellites are visible from any point on earth at any given time.
-
- Satellites in polar orbits:
- Tiros - N series (historical: 1960-1966)
- NOAA, $\mathrm{P}=102 \mathrm{~min}$, altitude about 800 km . Also provides SARSAT service
- SARSAT service
- Based on utilization of Doppler shift and known satellite orbit
\cdot

Geostationary satellite

Global Navigation Satellite Systems

The Doppler Effect

$$
\Delta f=\left|f-f_{0}\right|=\frac{v}{c} f_{0} \Rightarrow \frac{\Delta f}{f_{0}}=\frac{v}{c} \Rightarrow \Delta f=v / \lambda \text { york } \mathbf{U}
$$

COSPAS-SARSAT

Search and Rescue satellite

 Sponsored by Canada, France, Russia and US

Emergency Locator Radio Beams

Location determination using Doppler processing

Example 2-1

Q: A SARSAT satellite is in a LEO at height 1450 km and has an orbital velocity of $\mathrm{v}_{\mathrm{S}}=7.1358 \mathrm{~km}$ s^{-1}. Below the orbit is an emergency locator from a person in distress transmitting at $\mathrm{f}_{0}=406 \mathrm{MHz}$. The projected velocity is v_{T}. What is the frequency the satellite receives at the time corresponding to the sketch in the Figure. The radius of Earth $=6378.137 \mathrm{~km}$.

A:

$$
\begin{aligned}
V_{T} & =V_{s} \cos \theta \\
& =7.1358 \times \frac{6378.137}{6378.137+1450} \\
& =5.8140 \mathrm{~km} \mathrm{~s}^{-1} \\
\frac{\Delta f}{f_{0}} & =\frac{v}{c}=5.8140 /\left(3.0 \times 10^{5}\right) \\
& =0.00001938 \\
\Delta \mathrm{f} & =7.868 \mathrm{kHz}
\end{aligned}
$$

Location determination using Doppler processing

Ellipse

a: semimajor axis
b: semiminor axis
e: eccentricity
$c^{2}=a^{2}-b^{2}$
$e=\frac{c}{a}=\frac{\sqrt{a^{2}-b^{2}}}{a}=\sqrt{1-\left(\frac{b}{a}\right)^{2}}$

Ellipses with different eccentricities

$$
\begin{aligned}
& e=0, \quad a=b \\
& e=0.5, \quad\left(\frac{b}{a}\right)^{2}=1-0.25=0.75, \quad \frac{b}{a} \approx 0.85 \\
& e=0.8, \quad\left(\frac{b}{a}\right)^{2}=1-0.64=0.36, \quad \frac{b}{a} \approx 0.6 \\
& e=1, \quad b=0
\end{aligned}
$$

Johannes Kepler (1571-1630)

Wikipedia

Kepler's Laws

as applied to satellites

- First Law: The orbit of each satellite is an ellipse with the Earth at one focus.

- Second Law: A satellite moves in such a way that a line drawn from the Earth to the satellite sweeps out equal areas in equal intervals of time.

- Third Law: The square of the orbital period, P, of a satellite is directly proportional to the cube of the semimajor axis of the orbit

$$
\mathrm{P}^{2}=k \mathrm{a}^{3} \quad \mathrm{k}=\text { const }
$$

Example 2-2

- Q: The satellite on which orbit has the longest orbital period?

Isaac Newton (1642-1727)

Newton’s Universal Law of Gravitation

$$
\vec{F}=\mathrm{G} \frac{M m}{r^{2}} \frac{\vec{r}}{r}
$$

Gravitational constant $G=6.6726 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-1}$

Newton's $2^{\text {nd }}$ Law of Motion

$$
\vec{F}=m \ddot{\vec{r}}
$$

Weight and escape velocities

$$
\vec{F}=\mathrm{G} \frac{M m}{r^{2}} \frac{\vec{r}}{r}
$$

Weight: $\mathrm{W}=\mathrm{mg}, \mathrm{g}=\mathrm{G} \frac{M}{r^{2}}$

$$
\begin{aligned}
\mathrm{M} & =5.9810^{24} \mathrm{~kg} \\
\mathrm{GM} & =3.986005 \cdot 10^{14} \mathrm{~m}^{3} \mathrm{~s}^{-2} \\
& =3.986005 \cdot 10^{5} \mathrm{~km}^{3} \mathrm{~s}^{-2} \\
\mathrm{R}_{\mathrm{e}} & =6.37814 \cdot 10^{3} \mathrm{~km} \text { (at equator) }
\end{aligned}
$$

$\mathrm{F}_{\mathrm{c}}=\frac{m v^{2}}{r} \quad$ (centrifugal force)
$\mathrm{F}_{\mathrm{g}}=\frac{G M m}{r^{2}}$ (gravitational force)
$\mathrm{F}_{\mathrm{c}}=\mathrm{F}_{\mathrm{g}} \quad \square$ orbital velocity $\quad \mathrm{v}^{2}=\frac{G M}{r}$
Orbital velocity around Earth at $\mathrm{r}=\mathrm{R}_{\mathrm{E}}: \mathrm{v}_{\text {orb }}=\left(\frac{G M}{R_{e}}\right)^{1 / 2}=7.905 \mathrm{~km} \mathrm{~s}^{-1}$

$$
\begin{aligned}
\left(\mathrm{E}_{\mathrm{kin}}+\mathrm{E}_{\mathrm{pot}}\right)_{\text {init }} & =\left(\mathrm{E}_{\mathrm{kin}}+\mathrm{E}_{\mathrm{pot}}\right)_{\text {fin }} \\
\frac{m v^{2}}{2}-\frac{G M m}{r} & =0+0
\end{aligned}
$$

Escape velocity from Earth:

Two-body problem

This is a fundamental differential equation used in the study of artificial satellites.

- It is a $2^{\text {nd }}$ order vector linear differential equation.
- The solution will involve 6 constants, 2 for each coordinate
- The constants are called orbital elements of Keplerian elements or Keplerian orbital elements

Characteristics of the solution

\[

\]

Taking the scalar product of both sides with \vec{r}, we get:
$(\vec{r} \times \vec{v}) \cdot \vec{r}$

$$
\Rightarrow=0
$$

since $\vec{r} \times \vec{v}$ is perpendicular to \vec{r} and since the scalar product of two perpendicular vectors $=0$

$$
\Rightarrow \vec{h} \cdot \vec{r} \quad=0
$$

Conclusion

All the motion takes place:
$>$ In a plane that is swept out by \vec{r}
$>$ Through the origin
$>$ Perpendicular to \vec{h}

Problem of motion in 3 dimensions reduces to a 2dimensional problem of motion (motion in a plane) and to the problem of orienting the plane in space.

Keplerian elements

The position of a satellite in space is given at any time by a set of six Keplerian elements:

Shape of the ellipse

a: semimajor axis
e: eccentricity

Timetable with which the satellite orbits Earth

v : true anomaly at epoch, defines where the satellite is within the orbit with respect to the perigee. There are two other anomalies, M, mean anomaly and E, eccentric anomaly. For circular orbit $=>\mathrm{M}=\mathrm{v}$.

Orientation of the ellipse in the orbital plane

ω : argument of perigee, i.e., the geocentric angle measured from the ascending node to the perigee in the orbital plane in the direction of the satellite's motion.

Orientation of the orbital plane in space

i: inclination of the orbital ellipse. It is the angle measured from the equatorial plane to the orbital plane at the ascending node going from east to north.
Ω : right ascension (RA) of the ascending node, i.e., the geocentric angle measured from the vernal equinox to the ascending node in the equatorial plane eastward.

Three anomalies

- \mathbf{v} : true anomaly: geocentric angle measured from perigee to the satellite in the orbital plane in the direction of the satellite's motion.
perigee

- M: mean anomaly: $M=n\left(t-t_{p}\right) ; n$: mean motion, t_{p} : time of perigee crossing
- E: Eccentric anomaly: angle measured at the orbit center from perigee to the satellites projection on a circle with radius a

All three anomalies are related through Kepler's and Gauss' equations

Graphical description of the ellipse

$$
e=\frac{c}{a}=\frac{\sqrt{a^{2}-b^{2}}}{a}=\sqrt{1-\left(\frac{b}{a}\right)^{2}}
$$

$h_{a}=r_{a}-R_{\oplus}$ apogee height
$h_{p}=r_{p}-R_{\oplus}$ perigee height
$r_{a}=a(1+e) \quad$ length of radius vector to apogee
$\mathrm{p}=\mathrm{a}\left(1-\mathrm{e}^{2}\right)$ semilatus rectum
$r_{p}=a(1-e)$ length of radius vector to perigee

Keplerian elements

Keplerian elements

$a, e, v, i, \Omega, \omega$

Other parameters used instead of "a"

- P: orbital period

$$
v^{2}=r^{2} \omega^{2}
$$

$$
G \frac{M m}{r^{2}}=\mathrm{ma}_{\mathrm{c}}=\mathrm{m}\left(\frac{v^{2}}{r}\right)=\mathrm{mr} \omega^{2}
$$

$$
G \frac{M}{r^{3}}=\omega^{2}=\left(\frac{2 \pi}{P}\right)^{2} \quad \frac{P^{2}}{r^{3}}=\frac{4 \pi^{2}}{G M}
$$

$$
P^{2}=\frac{4 \pi^{2}}{G M} a^{3}
$$

$$
\mathrm{r}=\mathrm{a}
$$

- n: mean motion

$$
n=\frac{2 \pi}{P}=\sqrt{\frac{G M}{a^{3}}}=\sqrt{\frac{\mu}{a^{3}}}
$$

Example 2-2

Q: What is the period, P, velocity, v , and mean motion, n , of a geostationary satellite with a distance from the center of Earth of $\mathrm{r}=42164.17 \mathrm{~km}$?
$r=a$

$$
\begin{array}{ll}
P^{2}=\frac{4 \pi^{2}}{G M} a^{3} & \mathrm{P}=\left(\frac{4 \pi^{2}}{3.986005 \cdot 10^{14}} 4.216417 \cdot 10^{7}\right)^{1 / 2}=86164.01 \mathrm{~s} \\
\mathrm{P}=23 \mathrm{~h} 56 \mathrm{~m} 04.0 \mathrm{~s} \\
\mathrm{v}^{2}=\frac{G M}{a} & \mathrm{v}=\left(\frac{3.986005 \cdot 10^{14}}{4.216417 \cdot 10^{7}}\right)^{1 / 2}=3.07466 \mathrm{~km} \mathrm{~s}^{-1} \\
\mathrm{n}=\frac{2 \pi}{P} & \mathrm{n}=\frac{2 \pi}{86164.01}=7.9212245 \cdot 10^{-5} \mathrm{rad} \mathrm{~s}^{-1} \\
\mathrm{n}=\frac{1}{P} & \mathrm{n}=\frac{1}{86164.01}=1.1605773 \cdot 10^{-5} \text { revolutions s}^{-1} \\
& =1.0027388 \text { revolutions } \mathrm{d}^{-1}
\end{array}
$$

Geostationary satellites on their orbit present number ~ 400

Space.com

Vernal equinox or First point of aries (γ)

YORKU

Celestial sphere

Geocentric equatorial coordinate system

what are the coordinates of the star?

Geocentric equatorial coordinate system

What are RA and dec. of Sun in sketch?

North celestial pole

Where is the Sun today?

North celestial pole

What are the RA and dec. coordinates of the vernal equinox (γ) ?
 North celestial pole

Precession of the equinoxes

motion of the equinoxes along the ecliptic (plane of the orbit of Earth)

© 2012 Encyclopædia Britannica, Inc.

Gyroscope's
axis of rotation
changes direction (precession)

2

4

Gravitational forces of the Sun and the Moon pulling on Earth as it rotates cause Earth to undergo a top-like motion called precession. Over a period of 26,000 years, Earth's rotation axis slowly moves in a circular motion.

This precession causes the position of the North Celestial Pole to slowly change over time. Today, the North Celestial Pole is near the star Polaris, which we call the "North Star." However, in 3000 BC, Thuban was close to the North Celestial Pole and in 14,000 $A D$, Vega will be in this location.

Precession also causes the vernal equinox to move along the celestial equator by 360° in 26,000 years. That means that the RA and dec changes slowly due to precession. In astronomy we therefore need to refer to a date for RA and dec. That date is the start of the year 2000. The coordinates are then in J2000.

Changes of the obliquity of the ecliptic

2.2 Orbit perturbations

The Keplerian orbit is ideal. It is assumed that:

- The Earth is a sperically symmetric body with a uniformy distributed mass.
- Only forces present are:
- The gravitational forces of the Earth with a $1 / \mathrm{r}^{2}$ dependence.
- The centrifugal force from the satellite motion.
- The satellite is a point-like body with zero cross-section.

However, there are several effects that cause perturbations of the ideal orbit.

1. Effects of the non-spherical Earth

a) Effects of the equatorial bulge (effect on: $\mathrm{n}, \boldsymbol{\Omega}, \boldsymbol{\omega}$)

i) Mean motion (n)

Example 2-3

$$
\mathrm{i}=0, \mathrm{a}=42,164 \mathrm{~km}, \mathrm{e}=0
$$

$$
\begin{aligned}
n=n_{0}\left[1+\frac{K_{1}}{a^{2}}\right] & =n_{0} \cdot\left[1+3.708 \cdot 10^{-5}\right] \mathrm{rad} \mathrm{~s}^{-1} \\
& =n_{0} \cdot\left[1+0.0021241 \mathrm{dea} \mathrm{~d}^{-1}\right.
\end{aligned}
$$

$$
\mathrm{P}-\mathrm{P}_{0}=\frac{2 \pi}{n}-\frac{2 \pi}{n_{0}}=-3.2 \mathrm{~s}
$$

$$
\begin{aligned}
& n=n_{0}\left[1+\frac{K_{1}\left(1-1.5 \sin ^{2} i\right.}{a^{2}\left(1-e^{2}\right)^{1.5}}\right] \quad \mathrm{rad} \mathrm{~s}^{-1} \\
& \mathrm{n}_{0}=\frac{2 \pi}{P_{0}}=\sqrt{\frac{\mu}{a^{3}}} \\
& \operatorname{rad~s}^{-1} \\
& \mathrm{~K}_{1}=66,063.1704 \mathrm{~km}^{2}
\end{aligned}
$$

ii) Regression of nodes - effect on Ω

Nodes slide along the equator in a direction opposite to the satellite motion

$$
\begin{aligned}
\frac{d \boldsymbol{\Omega}}{d t} & =-\mathrm{K} \cos i \\
\mathrm{~K} & =\frac{n K_{1}}{a^{2}\left(1-e^{2}\right)^{2}}
\end{aligned}
$$

K has the same units as n , for instance, rad $^{-1}$ or deg d ${ }^{-1}$

Example 2-4

$i=30^{\circ}, a=7,500 \mathrm{~km}, \mathrm{e}=0$
$n \approx n_{0}=86400 \cdot \sqrt{\frac{\mu}{a^{3}}}=86400 \cdot \sqrt{\frac{39860.5}{7500^{3}}} \mathrm{rad} \mathrm{d}^{-1}=83.982 \mathrm{rad} \mathrm{d}^{-1}$
$\mathrm{K}=0.0984 \mathrm{rad} \mathrm{d}^{-1}$
$\frac{d \boldsymbol{\Omega}}{d t}=-0.0852 \mathrm{rad} \mathrm{d}^{-1}$
$\frac{d \Omega}{d t}=-4.8832 \mathrm{deg} \mathrm{d}^{-1}$

For prograde orbit: $\frac{d \Omega}{d t}=<0$, westward slide of nodes
For retrograde orbit: $\frac{d \Omega}{d t}=>0$, eastward slide of nodes

For a particular inclination, i, we get a sun synchronous orbit where the nodes slide eastward by exactly 2π rad or 360° in one year.

$$
\frac{\mathrm{d} \boldsymbol{\Omega}}{\mathrm{dt}}=\frac{2 \pi}{365.24} \mathrm{rad} \mathrm{~d}^{-1} \quad \text { (for sun synchronous orbit) }
$$

Wikipedia

iii) Rotation of line of apsides - effect on ω Orbital ellipse rotates in orbital plane around focus

$$
\begin{aligned}
& \frac{d \omega}{d t}=\mathrm{K}\left(2-2.5 \sin ^{2} i\right) \\
& \frac{d \omega}{d t} \text { has units as } \mathrm{K} \text { and } \mathrm{K} \text { has units as } \mathrm{n}
\end{aligned}
$$

Example 2-5

$$
\begin{aligned}
& \mathrm{i}=30^{\circ}, \mathrm{a}=7,500 \mathrm{~km}, \mathrm{e}=0 \\
& \mathrm{~K}=0.0984 \mathrm{rad} \mathrm{~d}^{-1} \text { from previous example } \\
& \frac{d \omega}{d t}=0.0984 \cdot(1.375) \mathrm{rad} \mathrm{~d}^{-1} \\
& \frac{d \omega}{d t}=0.1353 \mathrm{rad} \mathrm{~d}^{-1} \\
& \frac{d \omega}{d t}=7.752 \mathrm{deg} \mathrm{~d}^{-1}
\end{aligned}
$$

There is an inclination, i , for which $\frac{d \omega}{d t}=0$ Best example: Molniya communications satellites

b) Effects of equatorial ellipticity

Satellite graveyard
c) Effects of tides

Tides change the mass distribution of the Earth
\rightarrow Very small effect and only on LEO satellites

2. Direct third-body effects. (effect mostly on i)

Direct attractions of the Moon and the Sun are significant

I increases to a maximum of 15^{0} in 27 years and then decreases to $i=0^{0}$ again. For a geosyncronous orbit $\left(i \neq 0^{0}\right)$ the satellite appears to move along a figure " 8 " seen from the ground stations.

3. Atmospheric drag (effects mostly on a and e)

Important for satellites with perigee height < 1000 km .
Perturbation of orbit depends on:
> Atmospheric density
> Satellite cross section (m^{2})
> Satellite mass (kg)
> Satellite speed

Satellite Altitude Lifetime
200 km
1 day
300 km 1 month
400 km 1 year
500 km 10 years
700 km 100 years
900 km 1000 years

Spaceacademy.net.au
(UNIVERSITEE

4. Solar radiation pressure

Acceleration on satellite depends on:
$>$ Solar radiation at satellite
$>$ Satellite mass
$>$ Satellite surface area exposed to Sun
$>$ Albedo of satellite depending on material

2.3 Visibility

There are three different planes and coordinate systems:

```
> Orbital plane -- perifocal coordinate system
\(>\) Equatorial plane -- geocentric equatorial coordinate system
> Plane tangential to surface of earth -- topocentric horizon coordinate system
```

\rightarrow coordinate transformations necessary (definitions of time necessary)

Problem:

How to determine from the Keplerian elements the
look angles (azimuth and elevation) of a satellite and the range to the satellite for any point on earth.

Solution path:

1) Describe locations of satellite and earth station in same non-rotating coordinate system that travels with Earth through space (geocentric equatorial coordinate system).
2) Then determine range vector and express it in topocentric horizon coordinate system.

Steps to solve the problem:

1. Locate satellite in perifocal coordinate system

$$
\vec{r}_{\mathrm{pf}}=\left[\begin{array}{l}
r \cos v \\
r \sin v
\end{array}\right]=\left[\begin{array}{l}
r_{p} \\
r_{q}
\end{array}\right]
$$

2. Locate satellite in geocentric equatorial coordinate system

$$
\vec{r}_{\mathrm{g}, \mathrm{eq}}=\tilde{R}\left[\begin{array}{l}
r_{p} \\
r_{q}
\end{array}\right]=\left[\begin{array}{l}
r_{x} \\
r_{y} \\
r_{z}
\end{array}\right]
$$

\tilde{R} matrix elements are functions of $, i, \Omega, \omega \quad$ North
$R_{11}=\cos \Omega \cos \omega-\sin \Omega \sin \omega \cos$
$R_{12}=\cos \Omega \sin \omega-\sin \Omega \cos \omega \cos$
$R_{21}=\sin \Omega \cos \omega+\cos \Omega \sin \omega \cos$
$R_{22}=\ldots \ldots$.
$R_{31}=\ldots \ldots$.
$R_{32}=\ldots \ldots$.

This is a non-rotating coordinate system which travels with Earth through space.

3. Locate Earth station in geocentric equatorial coordinate

 system
R_{\oplus} : Earth radius at λ_{E}
H : height above mean sea level
λ_{E} : Latitude of Earth station
LST Local sidereal time. (24h 360ㅇ)

LST of Earth station:

RA of a celestial object that is currently crossing the local meridian of the Earth station.

Local meridian:

Imaginary great circle on the celestial sphere from north through the zenith to south.

How is LST related to standard time?
 LST \longleftrightarrow GST \longleftrightarrow UT \longleftrightarrow standard time

GST and LST

LST of Earth station:

RA of a celestial object that is currently crossing the local meridian of the Earth station.

Local meridian:

Imaginary great circle on the celestial sphere from north through the zenith to south.

$$
\Phi_{\mathrm{o}}=0^{\circ} \text { Longitude of Greenwich }
$$

GST and LST

LST of Earth station:

RA of a celestial object that is currently crossing the local meridian of the Earth station.

Local meridian:

Imaginary great circle on the celestial sphere from north through the zenith to south.

$$
\Phi_{\mathrm{o}}=0^{\circ} \text { Longitude of Greenwich }
$$

GST and LST

LST of Earth station:

RA of a celestial object that is currently crossing the local meridian of the Earth station.

Local meridian:

Imaginary great circle on the celestial sphere from north through the zenith to south.

$$
\Phi_{\mathrm{o}}=0^{\circ} \text { Longitude of Greenwich }
$$

GST and LST

LST of Earth station:

RA of a celestial object that is currently crossing the local meridian of the Earth station.

Local meridian:

Imaginary great circle on the celestial sphere from north through the zenith to south.

$$
\Phi_{\mathrm{o}}=0^{\circ} \text { Longitude of Greenwich }
$$

GST and LST

LST of Earth station:

RA of a celestial object that is currently crossing the local meridian of the Earth station.

Local meridian:

Imaginary great circle on the celestial sphere from north through the zenith to south.

$$
\Phi_{\mathrm{o}}=0^{\circ} \text { Longitude of Greenwich }
$$

GST and LST

LST of Earth station:

RA of a celestial object that is currently crossing the local meridian of the Earth station.

Local meridian:

Imaginary great circle on the celestial sphere from north through the zenith to south.

$\Phi_{0}=0^{\circ} \quad$ Longitude of Greenwich	
Φ_{E}	Longitude of Earth station

GST and LST

LST of Earth station:

RA of a celestial object that is currently crossing the local meridian of the Earth station.

Local meridian:

Imaginary great circle on the celestial sphere from north through the zenith to south.

$$
\Phi_{\mathrm{o}}=0^{\circ} \text { Longitude of Greenwich }
$$

GST and LST

LST of Earth station:

RA of a celestial object that is currently crossing the local meridian of the Earth station.

Local meridian:

Imaginary great circle on the celestial sphere from north through the zenith to south.

$$
\Phi_{\mathrm{o}}=0^{\circ} \text { Longitude of Greenwich }
$$

US Dept of State Geographe
02020 Cooonle
02020
O 2020 Google
$\odot 2020$ ORIN
Image Landsat / Copernicus
Google Earth

3. Locate Earth station in geocentric equatorial coordinate

 system

$$
\vec{R}_{\mathrm{g} . \mathrm{eq}}=\left[\begin{array}{c}
\left|R_{\oplus}+H\right| \cos \lambda_{E} \cos (L S T) \\
\left|R_{\oplus}+H\right| \cos \lambda_{E} \sin (L S T) \\
\left|R_{\oplus}+H\right| \sin \lambda_{E}
\end{array}\right]=\left[\begin{array}{c}
R_{x} \\
R_{y} \\
R_{z}
\end{array}\right]
$$

R_{\oplus} : Earth radius at λ_{E}
H^{\oplus} : height above mean sea level
λ_{E} : Latitude of Earth station
LST Local sidereal time. ($24 \mathrm{~h} 360^{\circ}$)

LST of Earth station:

RA of a celestial object that is currently crossing the local meridian of the Earth station.

Local meridian:

Imaginary great circle on the celestial sphere from north through the zenith to south.

LST, RA and HA

Wikipedia

LST Oh when local meridian of Earth station cuts through the direction to the vernal equinox $(R A=0 h)$ during the course of the day

HA: Hour angle
HA = LST - RA

Seen from Earth station, a celestial object
rises $\quad(\mathrm{HA}<0 \mathrm{~h})$
culminate ($\mathrm{HA}=0 \mathrm{~h}$)
sets $\quad(\mathrm{HA}>0 \mathrm{~h})$

How is LST related to standard time?
LST \longleftrightarrow GST \longleftrightarrow UT \longleftrightarrow standard time
a) $\mathrm{LST}=\mathrm{GST}+\Phi_{E} \quad \Phi_{E}:$ Longitude of location

Example 2-6

York: longitude $=79^{\circ} 35^{\prime} \mathrm{W}$
$\rightarrow \Phi_{\mathrm{E}}=-79^{\circ} 35^{\prime}$
if GST $=120^{\circ}$

$$
=8^{h}
$$

$\rightarrow \quad \mathrm{LST}=40^{\circ} 25^{\prime}$
$=2^{\mathrm{h}} 41^{\mathrm{m}} 40^{\mathrm{s}}$

Both LST and GST are measured relative to fixed stars Unit: sidereal day which is < mean solar day.

James Cook 1728 - 1779

His goal was to find the Great South Land

He charted the east coast of Australia with a clock without a pendulum and claimed the land for Great Britain

US Dept of State Geographe
02020 Cooonle
02020
O 2020 Google
$\odot 2020$ ORIN
Image Landsat / Copernicus
Google Earth

Mean sidereal day and mean solar day

$\mathrm{P}_{\oplus \text {, orbit. }}=366.2422$ mean sidereal days
$=365.2422$ mean solar days
Leap year: if year is divisible by 4, except if it is a centennial year. However, if the centennial year is divisible by 400, then it is also a leap year.
JD: Julian date: continuous count of days since the beginning of the Julian period on 1 January 4713 BC

GST: \quad Greenwich sidereal time $=$ hour angle (HA) of the (average position of the vernal equinox

$$
\begin{array}{|l}
\hline \text { GST[deg] = 99.6909833+36000.7689 } \mathrm{T}_{\mathrm{C}}+0.00038708 \mathrm{~T}_{\mathrm{C}}^{2}+\mathrm{UT}[\mathrm{deg}] \\
\mathrm{T}_{\mathrm{C}}=(\mathrm{JD}-2415020) / 36525 \text { Julian centuries } \\
= \\
\quad \text { elapsed time in Julian centuries between Julian day JD and } \\
\\
\text { noon UT on Jan 0, } 1900 \text { (Jan 0.5, 1900). }
\end{array}
$$

UT or UTC: Universal time coordinated (based on atomic time given by Cesium clocks; the atomic time is broadcasted).
$\mathrm{UT}[\mathrm{deg}]=360[1 / 24(\mathrm{~h}+\mathrm{min} / 60+\mathrm{sec} / 60)]$ [deg] YORK

Sidereal Day vs. Solar Day

Earth Rotation 0°

Solar day:

1 Earth rotation relative to the Sun

Ohrs Omin

Ohrs Omin

SUN

Sidereal Day $=23$ hr 56 min 4 sec

Earth Rotation 180°

11hrs 58min

11 hrs 58 min

SUN

23hrs 56min (360°)

Sidereal Day = 23hr 56min 4sec

23hrs 56min (360°)
$24 \mathrm{hrs}\left(361^{\circ}\right)$

Sidereal Day Solar Day SUN

Earth Rotation 361°
(1° exaggerated for visibility)

Sidereal Day $=23$ hr 56 min 4 sec

Example 2-7

What is GST on 28 January 1994 at 12:00 UT?

$$
\begin{aligned}
& \text { 0.0 Jan 1994: JD = } 2449352.5 \\
& 28.5 \text { Jan 1994: }+28.5 \\
& 2449381.0 \\
& \mathrm{~T}_{\mathrm{c}}=(2449381.0-2415020.0) / 36525 \\
& =0.9407529 \\
& \text { UT=180 deg } \\
& \text { GST }=34,147.51907 \text { [deg] } \\
& =307.51907[\mathrm{deg}] \quad(94 \bullet 360 \mathrm{deg} \text { subtracted }) \\
& =307^{\circ} 31^{\prime} 8.652^{\prime \prime} \\
& =20^{\mathrm{h}} 30^{\mathrm{m}} 4.5768^{\mathrm{s}}
\end{aligned}
$$

On 28 January 1994 at 12:00 UT, $\quad G S T=20^{\mathrm{h}} 30^{\mathrm{m}} 4.5768^{\mathrm{s}}$
On 28 September 2020 at 09:00 UT, GST $=13^{\mathrm{h}} 31^{\mathrm{m}} 3.9^{\mathrm{s}}$
4. Locate satellite in topocentric-horizon coordinate system
a) Calculate range vector in geocentric equatorial coordinate system

b) Make coordinate transformation to the topocentric horizon coordinate system

Antenna look angles: Az, El

$$
\begin{array}{r}
\tan A z=-\frac{\rho_{\mathrm{E}}}{\rho_{\mathrm{s}}} \\
\sin E l=-\frac{\rho_{\mathrm{Z}}}{|\rho|}
\end{array}
$$

Range to the satellite

$$
\vec{\rho}_{\text {topo }}=|\rho|=\sqrt{\rho_{s}^{2}+\rho_{E}^{2}+\rho_{Z}^{2}}
$$

East

$$
\vec{\rho}_{\text {topo }}=\left[\begin{array}{c}
\rho_{s} \\
\rho_{e} \\
\rho_{z}
\end{array}\right]=\widetilde{D}\left[\begin{array}{l}
\rho_{x} \\
\rho_{y} \\
\rho_{z}
\end{array}\right]
$$

$\widetilde{D} \quad$ Matrix elements are

Special case:

Antenna look angles (Az, El) and range ($|\rho|$) for a geostationary satellite

Given: Φ_{E} : longitude of Earth station
λ_{E} : latitude of earth station
Φ_{S} : longitude of sub-satellite point
What are Az, El, $\left\lfloor\rho|,| \Phi_{E}-\Phi_{S} \|_{\lim }\right.$ (visibility limits)?

Special case:

Antenna look angles (Az, El) and range ($|\rho|$) for a geostationary satellite

Given: Φ_{E} : longitude of Earth station
λ_{E} : latitude of earth station
Φ_{S} : longitude of sub-satellite point
What are Az, El, $\left\lfloor\rho|,| \Phi_{E}-\Phi_{S} \|_{\lim }\right.$ (visibility limits)?

Topocentric-horizon coordinate system

Special case:

Antenna look angles (Az, El) and range ($|\rho|$) for a geostationary satellite

Given: Φ_{E} : longitude of Earth station
λ_{E} : latitude of earth station
Φ_{S} : longitude of sub-satellite point
What are Az, El, $\left\lfloor\rho|,| \Phi_{E}-\Phi_{S} \|_{\lim }\right.$ (visibility limits)?

Topocentric-horizon coordinate system

Special case:

Antenna look angles (Az, El) and range ($|\rho|$) for a geostationary satellite

Given: Φ_{E} : longitude of Earth station
λ_{E} : latitude of earth station
Φ_{S} : longitude of sub-satellite point
What are Az, EI, $|\rho|, \mid \Phi_{E}-\Phi_{S} l_{\text {lim }}$ (visibility limits)?

Topocentric-horizon coordinate system

Special case:

Antenna look angles (Az, El) and range ($|\rho|$) for a geostationary satellite

Special case:

Antenna look angles (Az, El) and range ($|\rho|$) for a geostationary satellite

Az (Azimuth)

$$
\tan A=\frac{-\tan \left(\left|\Phi_{E}-\Phi_{S}\right|\right)}{\sin \lambda_{E}}
$$

1. With station in southern hemisphere $\left(\lambda_{E}<0\right): \Phi_{E}-\Phi_{S}<0: \mathrm{Az}=\mathrm{A}$
2. With station in southern hemisphere $\left(\lambda_{E}<0\right): \Phi_{E}-\Phi_{S}>0: \mathrm{Az}=360^{\circ}-\mathrm{A}$
3. With station in northern hemisphere $\left(\lambda_{E}>0\right)$: $\Phi_{E}-\Phi_{S}<0: \mathrm{Az}=180^{\circ}+\mathrm{A}$
4. With station in northern hemisphere $\left(\lambda_{E}>0\right): \Phi_{E}-\Phi_{S}>0: \mathrm{Az}=180^{\circ}-\mathrm{A}$

Az (Azimuth)

$$
\tan A=\frac{-\tan \left(\left|\Phi_{E}-\Phi_{S}\right|\right)}{\sin \lambda_{E}}
$$

1. With station in southern hemisphere $\left(\lambda_{E}<0\right): \Phi_{E}-\Phi_{S}<0: \mathrm{Az}=\mathrm{A}$
2. With station in southern hemisphere $\left(\lambda_{E}<0\right): \Phi_{E}-\Phi_{S}>0: \mathrm{Az}=360^{\circ}-\mathrm{A}$
3. With station in northern hemisphere $\left(\lambda_{E}>0\right): \Phi_{E}-\Phi_{S}<0: \mathrm{Az}=180^{\circ}+\mathrm{A}$
4. With station in northern hemisphere $\left(\lambda_{E}>0\right): \Phi_{E}-\Phi_{S}>0: \mathrm{Az}=180^{\circ}-\mathrm{A}$

Example 2-8

1.

$$
\begin{gathered}
\left|\Phi_{E}-\Phi_{S}\right|=60^{\circ} \quad \lambda_{E}=-15^{\circ} \\
\tan A=\frac{-\tan (60)}{\sin (-15)}=\frac{-1.732}{-0.259}=6.687 \\
\mathrm{~A}=81.5^{\circ} \\
\mathrm{AZ}=81.5^{\circ}
\end{gathered}
$$

4. $\left|\Phi_{E}-\Phi_{S}\right|=60^{\circ} \quad \lambda_{E}=50^{\circ}$
$\tan A=\frac{-\tan (60)}{\sin (50)}=\frac{-1.732}{0.766}=-2.261$ $A=-66.1^{\circ}$
$A z=246.1^{\circ}$
D. Roddy (2006)

El (Elevation)

$\cos E l=\frac{R_{E}+h}{\rho} \sin c \quad$ with $\quad \cos c=\cos \lambda_{E} \cos \left(\Phi_{E}-\Phi_{S}\right)$
$|\rho|$ (Range)
$|\rho|=\left[R_{\oplus}^{2}+\left(R_{E}+h\right)^{2}-2 R_{\oplus}\left(R_{E}+h\right) \cos c\right]^{1 / 2}$
Note: $\quad R_{\oplus}=\operatorname{Re}\left(1-\frac{\sin ^{2} \lambda_{e}}{298.257}\right)$

B (Limits of visibility)

$\mathrm{B}=\cos ^{-1}\left\{\frac{\sin \left[E l_{\text {min }}+\sin ^{-1}\left(\frac{R_{\oplus} \cos E l_{\text {min }}}{R_{E}+h}\right)\right]}{\cos \lambda_{E}}\right\}$ $E I_{\text {min }}=$ minimum pointing elevation for antenna

Satellites can be seen with sub-satellite longitudes +B and -B from the earth station longitude.
For earth station on equator and $E I_{\text {min }}=0^{\circ} \quad B=\cos ^{-1}\left(\frac{6378.14}{42164.17}\right)=81.3^{\circ}$

$\mathrm{R}_{\mathrm{e}}+\mathrm{h}$: Geostationary orbit radius $\boldsymbol{\rightarrow} \mathrm{a}$

Earth eclipse of satellite

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6769530

20 Mar 2004 17:00:00.00

Earth eclipse of satellite: Satellite gets into the shadow of Earth. That happens for LEO satellites frequently and would happen once each day also for geostationary satellites if the Earth equator were not tilted with respect to the Earth orbit.

Because of the obliquity of 23.4° geostationary satellites are in full view of the Sun throughout the year except around the equinoxes. For ± 23 days around the equinoxes a geostationary satellite is in the Earth shadow for 10 to 72 $\mathrm{min} / \mathrm{day}$. During these times batteries need to be used on the satellite.

D. Roddy (2006)

Preferred positions for geostationary satellites: Satellites east of ES enter shadow early in the evening during busy times. A satellite west of ES enters shadow in the early morning hours when usage is low.

YORK
UN I VERS ITEÉ
U N I VERS I T Y

Sun transit outage

Sun transit outage: When a satellite comes close to the line of sight to the Sun, the earth station picks up a lot of noise from the Sun that blanks out the signal from the satellite. For geostationary satellites that happens for ± 6 days around the equinoxes for $10 \mathrm{~min} /$ day.

Telescope beam

Telescope beam

Sun transit outage ends

Practice questions

1) Give the values of the orbital parameters and show how they are defined

2) Give the values of the orbital parameters and show how they are defined

3) Give the values of the orbital parameters and show how they are defined

4) Give the values of the orbital parameters and show how they are defined

5) Whic Keplerian elements can be inferred from the subsatellite path on the figure below?

6) Which of the Keplerian elements of the satellite with the green path on the figure below is correct?
A. $a=21,164 \mathrm{~km}$, B. $a=42,164 \mathrm{~km}$ C. $e=0.2$ D. $e=-0.2$
E. $i=40^{\circ}$

7) Which of the Keplerian elements of the satellite with the green path on the figure below is correct?
A. $a=21,164 \mathrm{~km}$, B. $a=42,164 \mathrm{~km}$ C. $e=0.2$ D. $e=-0.2$
E. $i=40^{\circ}$

Keplerian elements

2.4 Launch

© Encyclopædia Britannica, Inc.

Launch of Haruka on board of a M-V rocket VLBI space observatory program

Launch of Gravity Probe B

Launch of RadioAstron

Hohmann transfer orbit

Walter Hohmann 1880-1945

Hohmann transfer orbit is an elliptical orbit between two circular orbits in the same plane around the same central body using considered to be the lowest possible amount of propellant.

Stages of placing a satellite into geostationary orbit

$$
\mathrm{E}_{\mathrm{tot}}=\frac{m v^{2}}{2}-\frac{G M m}{r}
$$

$$
\Delta v_{1}=\sqrt{\frac{\mu}{r_{1}}}\left(\sqrt{\frac{2 r_{2}}{r_{1}+r_{2}}-1}\right)
$$

Stages of placing a satellite into geostationary orbit

$$
v_{4}=v_{3}+\Delta v_{3}
$$

1. Satellite is sent into circular orbit (or transfer orbit directly)
2. Acquisition is obtained via omnidirectional satellite antenna
3. Keplerian elements of transfer orbit are determined
4. Apogee kick motor is fired when satellite is at apogee
5. Satellite velocity and orientation are adjusted, system is checked out

Derivation for pundits

$$
\begin{aligned}
& \text { Conservation of momentum: } \quad m v_{p} r_{1}=m v_{a} r_{2} \quad \rightarrow \quad v_{a}=\frac{r_{1}}{r_{2}} v_{p} \\
& \text { Conservation of energy: } \quad \frac{1}{2} m v_{p}^{2}-\frac{\mu m}{r_{1}}=\frac{1}{2} m v_{a}^{2}-\frac{\mu m}{r_{2}} \\
& \frac{1}{2} v_{p}^{2}-\frac{1}{2}\left(\frac{r_{1}}{r_{2}} v_{p}\right)^{2}=\frac{\mu}{r_{1}}-\frac{\mu}{r_{2}} \\
& v_{p}^{2}\left(1-\left(\frac{r_{1}}{r_{2}}\right)^{2}\right)=2 \mu\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right) \\
& v_{p}^{2}\left(\frac{r_{2}^{2}-r_{1}^{2}}{r_{2}^{2}}\right)=2 \mu\left(\frac{r_{2}-r_{1}}{r_{1} r_{2}}\right) \\
& \text { with } \\
& v_{2}=v_{p} \\
& v_{2}^{2}=2 \mu \frac{r_{2}}{r_{1}\left(r_{1}+r_{2}\right)} \\
& \text { with } \quad v_{2}=v_{1}+\Delta v_{1} \\
& \rightarrow \quad \Delta v_{1}=v_{2}-v_{1} \\
& \Delta v_{1}=\sqrt{2 \mu \frac{r_{2}}{r_{1}\left(r_{1}+r_{2}\right)}}-\sqrt{\frac{\mu}{r_{1}}} \\
& \Delta v_{1}=\sqrt{\frac{\mu}{r_{1}}}\left(\sqrt{\frac{2 r_{2}}{r_{1}+r_{2}}}-1\right) \\
& \text { Similarly, with: } v_{4}=v_{3}+\Delta v_{3} \quad \rightarrow \quad \Delta v_{1}=v_{2}-v_{1} \\
& \Delta v_{3}=\sqrt{\frac{\mu}{r_{2}}}\left(1-\sqrt{\frac{2 r_{1}}{r_{1}+r_{2}}}\right)
\end{aligned}
$$

