


2.Orbital aspects of Satellite Communications
2.1 Orbits



Satellite Orbits overview



Three basic satellite orbits

Geostationary orbitExample: GPS Weather satellites
and Sarsat



Advantages and disadvantages
• Satellites in geostationary orbit:
•
• Advantages:
• Satellite remains stationary, no tracking equipment for earth station necessary
• Satellite is visible 24h per day
• Large coverage area: large number of earth stations can communicate
• Almost no Doppler shift – keeps electronics simple
•
• Disadvantages:
• Latitudes north of 81.5 deg are not covered
• Great distance – received signal is weak
• Launch cost higher than for low altitude orbits
• Only one geostationary orbit is possible
•
•
• Satellites in inclined orbits:
•
• Molniya series i=65 deg, P=12h  - provides communication services to the northern regions of Russia
• Military satellites
• Global Navigation Satellite Systems, e.g. GPS satellites, i=63 deg, P=12h, 3 orbital planes oriented at 120 deg angles w.r.t. 

each other, 3 x 8 satellites, at least 6 satellites are visible from any point on earth at any given time.
•
•
• Satellites in polar orbits:
•
• Tiros – N series (historical: 1960 – 1966)
• NOAA, P=102 min, altitude about 800 km. Also provides SARSAT service
•
• SARSAT service
• Based on utilization of Doppler shift and known satellite orbit
•
•



Geostationary satellite

• .

Latitude 81.5 o



Global Navigation Satellite Systems



The Doppler Effect
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Increasing frequency:   blueshift
Decreasing frequency:   redshift

f, f0 : frequency
𝜈: velocity
c: speed of light



COSPAS-SARSAT
Search and Rescue satellite

Sponsored by Canada, France, Russia and US

http://www.equipped.com/cospas-sarsat_overview.htm,
https://www.sarsat.noaa.gov/

Emergency Locator Radio Beams

http://www.equipped.com/cospas-sarsat_overview.htm
https://www.sarsat.noaa.gov/
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Location determination using Doppler processing
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Example 2-1
Q: A SARSAT satellite is in a LEO at height 1450 
km and has an orbital velocity of vS =7.1358 km 
s-1. Below the orbit is an emergency locator from 
a person in distress transmitting at f0= 406 MHz.
The projected velocity is  vT .What is the 
frequency the satellite receives at the time 
corresponding to the sketch in the Figure. The 
radius of Earth =6378.137 km.

A:

q
sV

TV

q

cosT sV V q=
6378.1377.1358

6378.137 1450
= ´

+
=5.8140 km s-1

0

f v
f c
D

= =5.8140/(3.0x105)

=0.00001938

△f=7.868 kHz
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Location determination using Doppler processing

8 kHz

-8 kHz



Ellipse

a a

Centre of Ellipse

b

c c
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a: semimajor axis
b: semiminor axis
e: eccentricityb
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Ellipses with different eccentricities



Johannes Kepler (1571-1630)

Wikipedia



Kepler’s Laws
as applied to satellites

• First Law: The orbit of each satellite is an ellipse with the Earth at one focus.

• Second Law: A satellite moves in such a way that a line drawn from the Earth 
to the satellite sweeps out equal areas in equal intervals of time.

• Third Law:  The square of the orbital period, P, of a satellite is directly 
proportional to the cube of the semimajor axis of the orbit 

P2 = ka3 k = const



• Q: The satellite on which orbit has the longest orbital 
period?

Example 2-2

a)

b)

c)



Isaac Newton (1642-1727)

Wikipedia

During the Great Plague of London, 
That began in 1665, 
Newton started his groundbreaking 
discoveries.



Newton’s Universal Law of Gravitation

�⃗� =G!"
#!

#⃗
#

Gravitational constant
G=6.6726 x 10-11 N m2 kg-1

Newton’s 2nd Law of Motion

�⃗� = 𝑚 ̈⃗𝑟



Weight and escape velocities

�⃗� =G!"
#!

#⃗
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g=9.81 m s-2 for Earth surface

Fc=
"%!

#
(centrifugal force)

Fg=
&!"
#!

(gravitational force) 

Fc = Fg orbital velocity      v2 = &!
#

M    =5.98 1024 kg 
GM = 3.986005 &1014 m3 s-2

= 3.986005 &105 km3 s-2

Re = 6.37814 &103 km (at equator) h
RE

Orbital velocity around Earth at r=RE:

Escape velocity from Earth:

"%!

'
- &!"

#
= 0+0

(Ekin +Epot)init = (Ekin +Epot)fin

Weight:  W=mg,    g= G!
#!

vorb = (&!
("

)1/2 =7.905 km s-1

vesc = ('&!
("

)1/2 =11.180 km s--1



Two-body problem
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̈⃗𝑟 =- μ
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𝑟=𝑟m-𝑟M

subtraction

For satellites          M+m=M

and with μ = GM 



This is a fundamental differential equation used in 
the study of artificial satellites. 

• It is a 2nd order vector linear differential equation. 

• The solution will involve 6 constants, 2 for each 
coordinate

• The constants are called orbital elements of Keplerian
elements or Keplerian orbital elements



Characteristics of the solution

𝑟 × ̇⃗𝑣 =-μ
!!

(𝑟 ×𝑟) = 0
"
"#

(𝑟 ×�⃗�)= 𝑟 × ̇⃗𝑣 + ̇⃗𝑟 × 𝑣

= 𝑟 × ̇⃗𝑣 + ̇⃗𝑟 × ̇⃗𝑟 =0 +0
𝑟 ×�⃗� = ℎ = constant vector               ℎ to 𝑟 𝑎𝑛𝑑 �⃗�
Taking the scalar product of both sides with 𝑟 , we get:
(𝑟 ×�⃗�) . 𝑟 = 0

since 𝑟 ×�⃗� is  perpendicular to 𝑟 and since the scalar product of two perpendicular vectors =0

ℎ . 𝑟 =0



Conclusion

All the motion takes place:

Ø In a plane that is swept out by 𝑟
Ø Through the origin
Ø Perpendicular to ℎ

Problem of motion in 3 dimensions reduces to a 2-
dimensional problem of motion (motion in a plane) 
and to the problem of orienting the plane in space.



Keplerian elements
The position of a satellite in space is given at any time by a set of six Keplerian elements:

Shape of the ellipse

a: semimajor axis    

e: eccentricity

Timetable with which the satellite orbits Earth

n : true anomaly at epoch, defines where the satellite is within the orbit with respect to the  
perigee. There are two other anomalies, M, mean anomaly and E, eccentric 
anomaly. For circular orbit => M=n.

Orientation of the ellipse in the orbital plane

w: argument of perigee, i.e., the geocentric angle measured from the ascending node to 
the perigee in the orbital plane in the direction of the satellite’s motion.

Orientation of the orbital plane in space

i: inclination of the orbital ellipse. It is the angle measured from the equatorial plane to the 
orbital plane at the ascending node going from east to north.

W: right ascension (RA) of the ascending node, i.e., the geocentric angle measured from 
the vernal equinox to the ascending node in the equatorial plane eastward.



Three anomalies
• n: true anomaly: geocentric angle measured from perigee to the satellite in the orbital 

plane in the direction of the satellite’s motion.

• M: mean anomaly: M = n(t – tp);  n: mean motion, tp: time of perigee crossing

• E: Eccentric anomaly: angle measured at the orbit center from perigee to the satellites 
projection on a circle with radius a

𝜈

perigee apogee

E

All three anomalies are related through Kepler’s and Gauss’ equations



Graphical description of the ellipse

F1

R⨁

rp

hp

ra

ha

a

bc=ae

perigee apogee
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apogee height

perigee height

ha= ra - R⨁
hp= rp - R⨁
ra= a(1+e) length of radius vector to apogee

rp= a(1-e) length of radius vector to perigee
p= a(1 - e2) semilatus rectum

p

r= -(./0!)
.+0 123 4

polar equation of the ellipse



Keplerian elements

O

Ascending node

nodal line

W

To 
vernal

equinox

X

Y

Z

Equator plane
i

w

perigee

q

Orbital plane

descending node

(right ascension of 
the ascending node)

(argument of Perigee )

(inclination)

𝛾

apogee

i: angle between two planes



Keplerian elements      

O

Ascending node

nodal line

W

To 
vernal

equinox

X

Y

Z

Equator plane
i

w

perigee

q

Orbital plane

descending node

(right ascension of 
the ascending node)

(argument of Perigee )

(inclination)

𝜈

𝛾

apogee

p=ae

a

a, e, 𝜈, 𝑖, Ω, 𝜔

i: angle between two planes



Other parameters used instead of  “a”

• P: orbital period

• n: mean motion
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+-
= ,

+-

ac : acceleration in this case

r=a          (semimajor axis length)



Example 2-2

Q: What is the period, P, velocity, v, and mean motion, n, of a 
geostationary satellite with a distance from the center of Earth of 
r=42164.17 km?
r=a

𝑃!= "#
7

$%
𝑎& P= ( "#7

&.()*++, -.+"#
4.216417 * 10/)1/2 = 86164.01 s

P= 23h 56m 04.0s

v2 = $%
0

v = &.()*++, -.+"#

".!.*"./-.+$
./!

=3.07466 km s-1

n= !#
2

n= !#
)*.*".+.

= 7.9212245*10-5 rad s-1

n= .
2

n= .
)*.*".+.

=1.1605773 *10-5 revolutions s-1

=1.0027388 revolutions d-1



Geostationary satellites on their orbit
present number ~400

Space.com



Vernal equinox or First point of aries (𝛾)
Position on the sky where the Sun crosses the celestial equator to higher declinations

Seen from outside Sun and Earth Seen from Earth

20 March

22 Sept.

21 Dec.20 June

Obliquity of the ecliptic: 23.5 o





Vernal equinox

Autumnal equinox Summer solstice

Winter solstice

Equatorial plane or
Celestial equator

North celestial pole

South celestial pole

Celestial sphere



Vernal equinox

Autumnal equinox Summer solstice

Winter solstice

Equatorial plane or
Celestial equator

North celestial pole

South celestial pole

Geocentric equatorial coordinate system
what are the coordinates of the star?



Vernal equinox

Autumnal equinox Summer solstice

Winter solstice

Equatorial plane or
Celestial equator

North celestial pole

South celestial pole

Geocentric equatorial coordinate system

RA

dec.

RA: measured eastward along the celestial equator 
in hours , minute, seconds

dec. measured from celestial equator toward the north 
celestial pole (positive) or toward the south celestial 
pole (negative) in degrees, arc-minutes and 
arc-seconds

RA: right ascension 𝛼 (hh mm ss.s)
dec.: declination 𝛿 (𝑑𝑒𝑔𝑚𝑖𝑛 𝑠𝑒𝑐)

1h : 150 6h: 900 12h: 1800 24h: 3600

Coordinates of star:
RA.  =  2h  0m 0s.000
dec. = 45o 0m 0s.000



Vernal equinox

Autumnal equinox Summer solstice

Winter solstice

Equatorial plane or
Celestial equator

North celestial pole

South celestial pole

What are RA and dec. of Sun in sketch?



Vernal equinox

Autumnal equinox Summer solstice

Winter solstice

Equatorial plane or
Celestial equator

North celestial pole

South celestial pole

Where is the Sun today?



Vernal equinox

Autumnal equinox Summer solstice

Winter solstice

Equatorial plane or
Celestial equator

North celestial pole

South celestial pole

What are the RA and dec. coordinates of the 
vernal equinox (𝛾)?

Coordinates of 𝛾 :
RA.  =0h 0m 0.000s
dec. = 0o 0m 0s.000

𝛾



Precession of the equinoxes
motion of the equinoxes along the ecliptic (plane of the orbit of Earth)



Gravitational forces of the Sun and the Moon pulling on Earth as it rotates cause 
Earth to undergo a top-like motion called precession.  Over a period of 26,000 
years, Earth’s rotation axis slowly moves in a circular motion.





This precession causes the 
position of the North Celestial 
Pole to slowly change over 
time. Today, the North Celestial 
Pole is near the star Polaris, 
which we call the “North Star.”
However, in 3000 BC, Thuban
was close to the North 
Celestial Pole and in 14,000 
AD, Vega will be in this 
location. 

Precession also causes the 
vernal equinox to move along 
the celestial equator by 3600 in 
26,000 years. That means that 
the RA and dec changes 
slowly due to precession. In 
astronomy we therefore need 
to refer to a date for RA and 
dec. That date is the start of 
the year 2000. The coordinates 
are then in J2000.



Changes of the obliquity of the ecliptic

http://astro.wsu.edu/worthey/astro/html/lec-precession.html



2.2 Orbit perturbations

The Keplerian orbit is ideal. It is assumed that:

− The Earth is a sperically symmetric body with a uniformy
distributed mass.

− Only forces present are:
§ The gravitational forces of the Earth with a 1/r2 dependence.
§ The centrifugal force from the satellite motion.

− The satellite is a point-like body with zero cross-section.

However, there are several effects that cause perturbations of the 
ideal orbit.



1. Effects of the non-spherical Earth
a) Effects of the equatorial bulge (effect on:  n, W, 𝝎)

N

S

R⨁

21 km
R𝑒

𝜆e : latitude

𝜆e

𝑅⨁ = 𝑅𝑒 (1 −
sin! 𝜆e

298.257)

Re = 6378.14 km

𝑛 = 𝑛0 1 +
𝐾1(1 − 1.5 sin! 𝑖
𝑎2 (1 − 𝑒2)#.%

i) Mean motion (n)

n0 = !&
'!

= (
)'

rad s-1

rad s-1

K1 = 66,063.1704 km2 a in km, P0 in s

Example 2-3

i=0, a=42,164 km, e=0

𝑛 = 𝑛0 1 +
*"

)#
= 𝑛0 :[1+3.708:10-5 ] rad s-1

= 𝑛0 :[1+0.002124 ] deg d-1

P-P0 = '5
8

- '5
8+

= -3.2 s
Radius of Earth at 𝜆e=0o



ii) Regression of nodes – effect on W
Nodes slide along the equator in a direction opposite to the satellite motion

N

S

prograderetrograde

Nodes slide

9W
9:

= -Kcos 𝑖

K = 8;#

-! ./0! !
K has the same units as n, 
for instance, rad d-1 or deg d-1

For prograde orbit:   9W
9:

= <0,  westward slide of nodes

For retrograde orbit: 9W
9:

= >0,  eastward slide of nodes

Example 2-4

i=30o, a=7,500 km, e=0

𝑛 ≈ 𝑛0 = 86400 & (
)" = 86400 & *+,-...0

10.." rad d-1 = 83.982 rad d-1

K= 0.0984  rad d-1

2W
23 = -0.0852  rad d-1

2W
23

= -4.8832  deg d-1



For a particular inclination, i, we get a sun synchronous orbit where 
the nodes slide eastward by exactly 2𝜋 rad or 3600 in one year.

<W
<=

=  '5
>?@.'B

rad d-1 (for sun synchronous orbit)

Wikipedia

This angle remains
constant

Wikipedia



O

Ascending node

nodal line

W

To 
vernal

equinox

X

Y

Z

Equator plane
i

w

perigee

q

Orbital plane

descending node

𝛾

apogee



iii) Rotation of line of apsides – effect on 𝜔
Orbital ellipse rotates in orbital plane around focus

9C
9:

= K(2-2.5sin' 𝑖)

9C
9:

9C
9:

has units as K and K has units as n 

Example 2-5

i=30o, a=7,500 km, e=0

K= 0.0984  rad d-1 from previous example

()
(*

= 0.0984 / (1.375) rad d-1

()
(*

= 7.752 deg d-1

()
(*

= 0.1353 rad d-1

There is an inclination, i, for which 9C
9:

=0
Best example: Molniya communications satellites

Argument of perigee

Right ascension of ascending node



b) Effects of equatorial ellipticity

105 0 W

Equator

00 longitude, 
Greenwich meridian

65 m
N

75 0 E

Satellite graveyard

Satellites in geostationary orbit 
drift toward satellite graveyards 
at 105 0 W and 75 0 E



c) Effects of tides

Tides change the mass distribution of the Earth
è Very small effect and only on LEO satellites



2. Direct third-body effects.  (effect mostly on i)

Direct attractions of the Moon and the Sun are significant

3rd body

For satellite in geostationary orbit:

9D
9:

= 0.8. deg yr -1

I increases to a maximum of 15 0 in 27 years and then 
decreases to i=00 again. For a geosyncronous orbit (i≠00) 
the satellite appears to move along a figure “8” seen from the 
ground stations.

i

Celestial equator

Figure at sky



3. Atmospheric drag    (effects mostly on a and e)

Important for satellites with perigee height < 1000 km.
Perturbation of orbit depends on:

Ø Atmospheric density
Ø Satellite cross section (m2)
Ø Satellite mass   (kg)
Ø Satellite speed

Spaceacademy.net.au

Satellite Altitude Lifetime
200 km         1 day
300 km         1 month
400 km         1 year
500 km       10 years
700 km     100 years
900 km   1000 years

m/A (kg/m2)



4. Solar radiation pressure

Acceleration on satellite depends on:

Ø Solar radiation at satellite
Ø Satellite mass
Ø Satellite surface area exposed to Sun
Ø Albedo of satellite depending on material



2.3 Visibility

There are three different planes and coordinate systems:

Ø Orbital plane                                     -- perifocal coordinate system
Ø Equatorial plane                               -- geocentric equatorial coordinate system
Ø Plane tangential to surface of earth  -- topocentric horizon coordinate system

è coordinate transformations necessary (definitions of time necessary)

Problem:
How to determine from the Keplerian elements the 

look angles (azimuth and elevation) of a satellite and 
the range to the satellite for any point on earth.

Solution path:

1)   Describe locations of satellite and earth station in same non-rotating coordinate system that 
travels with Earth through space (geocentric equatorial coordinate system). 

2)   Then determine range vector and express it in topocentric horizon coordinate system.



1. Locate satellite in perifocal coordinate system

Steps to solve the problem:

𝑟pf = 
𝑟 cos 𝜈
𝑟 sin 𝜈 = 

𝑟𝑝
𝑟𝑞

𝑟pf

𝜈
P

Q



2. Locate satellite in geocentric equatorial coordinate system

𝑟g. eq = 9𝑅 𝑟𝑝
𝑟𝑞

= 
𝑟𝑥
𝑟𝑦
𝑟𝑧

9𝑅 matrix elements are functions of , 𝑖, Ω, 𝜔

This is a non-rotating coordinate system 
which travels with Earth through space.

North

O

Ascending node

nodal line

W

To 
vernal

equinox

X

Y

Z

Equator plane
i

w

perigee

q

Orbital plane

descending node

X-Y equatorial plane

𝑟g. eq
Line of nodes or



3. Locate Earth station in geocentric equatorial coordinate 
system

X

Y

Z North

𝑅g. eq
𝜆𝐸

LST

𝑅g. eq =
𝑅⨁+ 𝐻 cos 𝜆𝐸 cos(𝐿𝑆𝑇)
𝑅⨁+ 𝐻 cos 𝜆𝐸 sin(𝐿𝑆𝑇)

𝑅⨁+ 𝐻 sin 𝜆𝐸
= 
𝑅𝑥
𝑅𝑦
𝑅𝑧

𝑅⨁: Earth radius at 𝜆𝐸
H : height above mean sea level
𝜆𝐸 : Latitude of Earth station
LST Local sidereal time.  (24h     360o)

Vernal equinox
𝛾

LST of Earth station:
RA of a celestial object that is currently 
crossing the local meridian of the 
Earth station. 

Local meridian: 
Imaginary great circle on the celestial 
sphere from north through the zenith to south.

Local meridian



How is LST related to standard time?
LST                GST               UT                 standard time 



GST and LST

X

Y

Z North

𝑅Greenwich

Vernal equinox
𝛾

LST of Earth station:
RA of a celestial object that is currently 
crossing the local meridian of the 
Earth station. 

Local meridian: 
Imaginary great circle on the celestial 
sphere from north through the zenith to south.

GST=22h

Φo =0o Longitude of Greenwich

Φo =0o



GST and LST

X

Y

Z North

𝑅Greenwich

Vernal equinox
𝛾

LST of Earth station:
RA of a celestial object that is currently 
crossing the local meridian of the 
Earth station. 

Local meridian: 
Imaginary great circle on the celestial 
sphere from north through the zenith to south.

GST=23h

00

Φo =0o Longitude of Greenwich



GST and LST

X

Y

Z North

𝑅Greenwich

Vernal equinox
𝛾

LST of Earth station:
RA of a celestial object that is currently 
crossing the local meridian of the 
Earth station. 

Local meridian: 
Imaginary great circle on the celestial 
sphere from north through the zenith to south.

GST= 0h

00

Φo =0o Longitude of Greenwich



GST and LST

X

Y

Z North

𝑅Greenwich

Vernal equinox
𝛾

LST of Earth station:
RA of a celestial object that is currently 
crossing the local meridian of the 
Earth station. 

Local meridian: 
Imaginary great circle on the celestial 
sphere from north through the zenith to south.

GST= 1h

00

Φo =0o Longitude of Greenwich



GST and LST

X

Y

Z North

𝑅Greenwich

Vernal equinox
𝛾

LST of Earth station:
RA of a celestial object that is currently 
crossing the local meridian of the 
Earth station. 

Local meridian: 
Imaginary great circle on the celestial 
sphere from north through the zenith to south.

GST= 2h

00

Φo =0o Longitude of Greenwich



GST and LST

X

Y

Z North

𝑅Greenwich

Vernal equinox
𝛾

LST of Earth station:
RA of a celestial object that is currently 
crossing the local meridian of the 
Earth station. 

Local meridian: 
Imaginary great circle on the celestial 
sphere from north through the zenith to south.

GST=22h

Φo =0o Longitude of Greenwich

Φo=0o

Φ𝐸

ΦE Longitude of Earth station

𝑅g. eq



GST and LST

X

Y

Z North

𝑅Greenwich

Vernal equinox
𝛾

LST of Earth station:
RA of a celestial object that is currently 
crossing the local meridian of the 
Earth station. 

Local meridian: 
Imaginary great circle on the celestial 
sphere from north through the zenith to south.

GST=23h

00

Φo =0o Longitude of Greenwich

Φ𝐸



GST and LST

X

Y

Z North

𝑅Greenwich

Vernal equinox
𝛾

LST of Earth station:
RA of a celestial object that is currently 
crossing the local meridian of the 
Earth station. 

Local meridian: 
Imaginary great circle on the celestial 
sphere from north through the zenith to south.

GST= 0h

00

Φo =0o Longitude of Greenwich

Φ𝐸





3. Locate Earth station in geocentric equatorial coordinate 
system

X

Y

Z North

𝑅g. eq
𝜆𝐸

LST

𝑅g. eq =
𝑅⨁+ 𝐻 cos 𝜆𝐸 cos(𝐿𝑆𝑇)
𝑅⨁+ 𝐻 cos 𝜆𝐸 sin(𝐿𝑆𝑇)

𝑅⨁+ 𝐻 sin 𝜆𝐸
= 
𝑅𝑥
𝑅𝑦
𝑅𝑧

𝑅⨁: Earth radius at 𝜆𝐸
H : height above mean sea level
𝜆𝐸 : Latitude of Earth station
LST Local sidereal time.  (24h     360o)

Vernal equinox
𝛾

LST of Earth station:
RA of a celestial object that is currently 
crossing the local meridian of the 
Earth station. 

Local meridian: 
Imaginary great circle on the celestial 
sphere from north through the zenith to south.



LST, RA and HA

HA: Hour angle
HA = LST - RA

LST 0h when local meridian of Earth station cuts 
through the direction to the vernal equinox (RA= 0h) 
during the course of the day

Seen from Earth station, a celestial object
rises         (HA < 0h)
culminate (HA = 0h)
sets          (HA > 0h)

Wikipedia



How is LST related to standard time?
LST                GST               UT                 standard time 

a) LST = GST +F𝐸 F𝐸. :   Longitude of location

York: longitude= 790 35’  W
è FE = -790 35’  

if GST = 1200

= 8h

è LST = 400 25’  
= 2h 41m 40s

Both LST and GST are measured relative to fixed stars
Unit: sidereal day  which is < mean solar day.

Example 2-6



James Cook 1728  - 1779

Royal Museums Greenwich

His goal was to find the Great South Land

He charted the east coast of Australia with a clock without 
a pendulum and claimed the land for Great Britain





Mean sidereal day and mean solar day

P⨁ , 𝑜𝑟𝑏𝑖𝑡. = 366.2422 mean sidereal days 
= 365.2422 mean solar days

Leap year:   if year is divisible by 4, except if it is a centennial year. 
However, if the centennial year is divisible by 400, then it 
is also a leap year.

JD: Julian date: continuous count of days since the beginning of 
the Julian period on 1 January 4713 BC

GST: Greenwich sidereal time = hour angle (HA) of the(average 
position of the vernal equinox

GST[deg] = 99.6909833+36000.7689 Tc + 0.00038708 Tc
2 +UT[deg]

Tc = (JD-2415020)/36525 Julian centuries
= elapsed time in Julian centuries between Julian day JD and 

noon UT on Jan 0, 1900 (Jan 0.5, 1900).
UT or UTC:  Universal time coordinated (based on atomic time given by 

Cesium clocks; the atomic time is broadcasted).
UT[deg] = 360 [1/24(h + min/60 + sec/60)]   [deg]



WordPress.com







J. O’Donoghue



J. O’Donoghue



Example 2-7

What is GST on 28 January 1994 at 12:00 UT?

0.0 Jan 1994: JD = 2449352.5
28.5 Jan 1994:      +          28.5

2449381.0

Tc =(2449381.0 – 2415020.0)/36525
= 0.9407529

UT=180 deg

GST = 34,147.51907  [deg]
=      307.51907  [deg]      (94 • 360 deg subtracted)
=      3070 31’ 8.652”
=      20h 30m 4.5768s

On 28 January 1994 at 12:00 UT,    GST = 20h 30m 4.5768s

On 28 September 2020 at 09:00 UT, GST = 13h 31m 3.9s



4. Locate satellite in topocentric-horizon coordinate system
a) Calculate range vector in geocentric equatorial coordinate system

X

Y

Z North

𝑅

�⃗� = r⃗ - R = 
𝜌𝑥
𝜌𝑦
𝜌𝑧

Vernal equinox
𝛾

�⃗�

r⃗



b) Make coordinate transformation to the topocentric horizon 
coordinate system

�⃗�topo

Zenith

East

North

El

Az

𝜌z

-𝜌s

𝜌e

�⃗�topo = 
𝜌𝑠
𝜌𝑒
𝜌𝑧

= E𝐷
𝜌𝑥
𝜌𝑦
𝜌𝑧

E𝐷 Matrix elements are
functions of LST and 𝜆𝑒

Antenna look angles: Az, El

tan𝐴𝑧 = -E,
E-

sin 𝐸𝑙 = - $#
$

Range to the satellite
�⃗�topo = 𝜌 = 𝜌%& + 𝜌'& + 𝜌(&



Special case:
Antenna look angles (Az, El) and range ( 𝜌 ) for a geostationary satellite

Given:    Φ𝐸 ∶ longitude of Earth station
𝜆𝐸 : latitude of earth station

Φ𝑆 ∶ longitude of sub-satellite point

What are Az, El, 𝜌 , 𝛷𝐸 − 𝛷𝑆. lim (visibility limits)?

N



Special case:
Antenna look angles (Az, El) and range ( 𝜌 ) for a geostationary satellite

Given:    Φ𝐸 ∶ longitude of Earth station
𝜆𝐸 : latitude of earth station

Φ𝑆 ∶ longitude of sub-satellite point

What are Az, El, 𝜌 , 𝛷𝐸 − 𝛷𝑆. lim (visibility limits)?

Φ𝐸

Earth 
station

Topocentric-horizon coordinate system

N



Special case:
Antenna look angles (Az, El) and range ( 𝜌 ) for a geostationary satellite

Given:    Φ𝐸 ∶ longitude of Earth station
𝜆𝐸 : latitude of earth station

Φ𝑆 ∶ longitude of sub-satellite point

What are Az, El, 𝜌 , 𝛷𝐸 − 𝛷𝑆. lim (visibility limits)?

Φ𝐸

Earth 
station

Topocentric-horizon coordinate system

N



Special case:
Antenna look angles (Az, El) and range ( 𝜌 ) for a geostationary satellite

Given:    Φ𝐸 ∶ longitude of Earth station
𝜆𝐸 : latitude of earth station

Φ𝑆 ∶ longitude of sub-satellite point

What are Az, El, 𝜌 , Φ𝐸 −Φ𝑆. lim (visibility limits)?

Φ𝐸

Earth 
station

Topocentric-horizon coordinate system

RE

N



Special case:
Antenna look angles (Az, El) and range ( 𝜌 ) for a geostationary satellite

Given:    Φ𝐸 ∶ longitude of Earth station
𝜆𝐸 : latitude of earth station

Φ𝑆 ∶ longitude of sub-satellite point

What are Az, El, 𝜌 , Φ𝐸 −Φ𝑆. lim (visibility limits)?

Φ𝐸

Earth 
station

Topocentric-horizon coordinate system

RE

N



Special case:
Antenna look angles (Az, El) and range ( 𝜌 ) for a geostationary satellite

Given:    Φ𝐸 ∶ longitude of Earth station
𝜆𝐸 : latitude of earth station

Φ𝑆 ∶ longitude of sub-satellite point

What are Az, El, 𝜌 , Φ𝐸 −Φ𝑆. lim (visibility limits)?
90o

Φ𝐸 − Φ𝑆.

Φ𝑆

Φ𝐸

90o-𝜆𝐸

Earth 
station

Az

El

Topocentric-horizon coordinate system
𝜌 s

h

RER⨁



Az (Azimuth)

tan𝐴=0 123 4# 04$

563 7.
1. With station in southern hemisphere (𝜆/ <0): Φ𝐸 − Φ𝑆 < 0 ∶ Az = A
2. With station in southern hemisphere (𝜆/ <0): Φ𝐸 − Φ𝑆 > 0 ∶ Az = 360o −A

3. With station in northern hemisphere (𝜆/ >0): Φ𝐸 − Φ𝑆 < 0 ∶ Az = 180o +A
4. With station in northern hemisphere (𝜆/ >0): Φ𝐸 − Φ𝑆 > 0 ∶ Az = 180o − A

D. Roddy (2006)

1. 2.

3. 4.



Az (Azimuth)

tan𝐴=0 123 4# 04$

563 7.
1. With station in southern hemisphere (𝜆/ <0): Φ𝐸 − Φ𝑆 < 0 ∶ Az = A
2. With station in southern hemisphere (𝜆/ <0): Φ𝐸 − Φ𝑆 > 0 ∶ Az = 360o −A

3. With station in northern hemisphere (𝜆/ >0): Φ𝐸 − Φ𝑆 < 0 ∶ Az = 180o +A
4. With station in northern hemisphere (𝜆/ >0): Φ𝐸 − Φ𝑆 > 0 ∶ Az = 180o − A

D. Roddy (2006)

1. 2.

3. 4.

Example 2-8
Φ𝐸 − Φ𝑆 =60o 𝜆/ = -15o

tan𝐴=0 123 4+
-53( 0#%)

= 0#.89!
0+.!%:

= 6.687

A=81.5o

Az=81.5o

1.

Φ𝐸 − Φ𝑆 =60o4. 𝜆/ = 50o

tan𝐴=0 123 4+
-53( %+)

= 0#.89!
+.844

= −2.261
A= -66.1o

Az =246.1o



El (Elevation)

|𝜌| (Range)

cos 𝐸𝑙 = 7$89
:

sin 𝑐 with cos 𝑐 = cos 𝜆; cos Φ𝐸 − Φ𝑆

𝜌 = 𝑅⨁' + 𝑅J + ℎ ' − 2𝑅⨁ 𝑅J + ℎ cos 𝑐
⁄8 !

𝐵 (Limits of visibility)

B=cos/.
3LM JN9:;+3LM<8

=⨁ ?@A BC9:;
=BDE

123 OB

Satellites can be seen with sub-satellite longitudes +B and –B from the earth station longitude.
For earth station on equator and Elmin =0o B=cos0#( 498;.#<

<!#4<.#8
) = 81.3o

Elmin = minimum pointing elevation for antenna

Re+h
Earth equator

North pole

BB

Geostationary orbit

Re+h:  Geostationary orbit radius è a

Note: 𝑅⨁ = 𝑅𝑒 (1 −
sin! 𝜆e

298.257)



Earth eclipse of satellite

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6769530

Earth eclipse of satellite: Satellite gets into the shadow of Earth. 
That happens for LEO satellites frequently and would happen 
once each day also for geostationary satellites if the Earth 
equator were not tilted with respect to the Earth orbit.

Because of the obliquity of 23.4o geostationary satellites 
are in full view of the Sun throughout the year except around 
the equinoxes. For ± 23 days around the equinoxes a 
geostationary satellite is in the Earth shadow for 10 to 72 
min/day. During these times batteries need to be used on 
the satellite.

Preferred positions for geostationary satellites:
Satellites east of ES enter shadow early in the 
evening during busy times. A satellite west of ES 
enters shadow in the early morning hours when 
usage is low.

D. Roddy (2006)



Sun transit outage: When a satellite comes close to the 
line of sight to the Sun, the earth station picks up a lot 
of noise from the Sun that blanks out the signal from 
the satellite. For geostationary satellites that happens 
for ±6 days around the equinoxes for 10 min/day.

Satellite will not appear before the Sun

Sun transit outage



Sun transit outage starts



Sun transit outage at maximum

Telescope beam



Sun transit outage ends

Telescope beam



Practice questions



1) Give the values of the orbital parameters and
show how they are defined



1) Give the values of the orbital parameters and
show how they are defined



1) Give the values of the orbital parameters and
show how they are defined



1) Give the values of the orbital parameters and
show how they are defined



3) Whic Keplerian elements can be inferred from the subsatellite path on 
the figure below?

subsatellite path

direction



3) Which of the Keplerian elements of the satellite with the green path on 
the figure below is correct?

A. a= 21,164 km,
B. a=42,164 km
C. e=0.2
D. e=-0.2
E. i=400



3) Which of the Keplerian elements of the satellite with the green path on 
the figure below is correct?

A. a= 21,164 km,
B. a=42,164 km
C. e=0.2
D. e=-0.2
E. i=400



Keplerian elements

O

Ascending node

nodal line

W

To 
vernal

equinox

X

Y

Z

Equator plane
i

w

perigee

q

Orbital plane

descending node

(right ascension of 
the ascending node)

(argument of Perigee )

(inclination)

𝛾

apogee

i: angle between two planes





2.4 Launch



Starship



Launch of Haruka on board of a M-V rocket
VLBI space observatory program



Launch of Gravity Probe B Launch of RadioAstron



Walter Hohmann
1880-1945

Image credit: Smithsonian Institution

Hohmann transfer orbit

Hohmann transfer orbit is an elliptical orbit between two 
circular orbits in the same plane around the same central 
body using considered to be the lowest possible amount 
of propellant.
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Stages of placing a satellite into geostationary orbit
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v3

v4

r2 = R

𝜐# = 𝜐! +∆𝜐F

𝜐#=
?
7

Stages of placing a satellite into geostationary orbit
1. Satellite is sent into circular orbit (or transfer orbit directly)
2. Acquisition is obtained via omnidirectional satellite antenna
3. Keplerian elements of transfer orbit are determined
4. Apogee kick motor is fired when satellite is at apogee
5. Satellite velocity and orientation are adjusted, 

system is checked out

∆𝜐>

∆𝜐9=
(
=#

1 −
2𝑟!

𝑟1 + 𝑟2



𝑚𝜐Q𝑟.= 𝑚𝜐-𝑟'Conservation of momentum:

Conservation of energy: .
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Similarly, with : 𝜐< = 𝜐9+Δ𝜐9 Δ𝜐H= 𝜐" - 𝜐Hè

Δ𝜐9=
(
='

1 − !=!
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Derivation for pundits


