# 1. <u>Signal Processing Fundamentals</u>

### 1.1 Continuous and discrete signals

Fundamental to the study of radio science and techniques for space exploration is the concept of a signal and how the signal is represented and processed. In this course we want to use the word "signal" in the broadest possible sense.

A <u>signal</u> is the variation of a physically measurable quantity. Variations of the quantity are manifestations of a particular process under study and have this process as their cause.

<u>Noise</u>, in contrast, is a variation of the physically measurable quantity. However, variations of the quantity are not a manifestation of a particular process under study and have a frequently unknown process as their cause.

Examples of signals:

- The voltage fluctutions at the focus of a radio antenna tracking the Cassini spacecraft.
- The current across a 1 Ohm resistor.
- The beam pattern of a radar antenna
- The ground displacements in continental drift

In electrical engineering a signal is often a function of time and/or space and can be functionally represented.

Example: a continuous time signal:



If we assume that the function y(t) has been sampled at regular intervals,  $\Delta t$ , then the set of samples is called a time series. It consists of N known values,  $y_k$ , k=1,2,3,..,N



In the following we want to use parenteses for continuous functions and subscripts or brackets for discrete functions. For instance:

y(t): continuous function  $y_k$  : discrete function y[k]; discrete function

Some very fundamental continuous and discrete functions are:



## Step function



## Ramp function





Some important relations are:

$$u(t) = \frac{1}{2} (1 + \text{sgn}(t))$$

$$u[k] = \frac{1}{2} (1 + \text{sgn}[k])$$

$$r(t) = t u(t)$$

$$r[k] = k u[k]$$

$$\delta(t) = \frac{d}{dt} u(t)$$

$$\delta[k] = u[k] - u[k-1], \quad k \le 0$$

$$t$$

$$u(t) = \int_{k} \delta(t) dt$$

$$-\infty$$

$$k$$

$$u[k] = \sum_{n=-\infty} \delta[k]$$

$$n=-\infty$$

### 1.2 Fourier Series

The representation of a function over a certain interval by a linear combination of mutually orthogonal functions is called a Fourier series representation of a function. Examples of sets of orthogonal functions are:

| $\sin n\omega_0 t$ , $\cos n\omega_0 t$                  |
|----------------------------------------------------------|
| $exp(i n\omega_0 t)$                                     |
| $P_n(t) = 1/(2^n n!) d^n/dt^n (t^2-1)^n$                 |
| $+\pi$                                                   |
| $J_n(\beta) = 1/(2\pi) \int \exp(i\beta \sin x - nx) dx$ |
| -π                                                       |
|                                                          |

One particular Fourier series we will use in this course is the exponential Fourier series. It uses the functions {  $exp(i n\omega_0 t)$  } n=0, ±1, ±2, ±3,... which are orthogonal over the interval (t<sub>0</sub>, t<sub>0</sub>+T).

$$y(t) = \sum_{n=-\infty}^{+\infty} c_n e^{in\omega_0 t}$$
$$c_n = \frac{1}{T} \int_{t_0}^{t_0+T} y(t) e^{-in\omega_0 t} dt$$

The magnitude and phase of the n<sup>th</sup> harmonic are

$$|c_n| = \sqrt{\operatorname{Re}^2[c_n] + \operatorname{Im}^2[c_n]}$$
$$\angle c_n = \tan^{-1}(\frac{\operatorname{Im}[c_n]}{\operatorname{Re}[c_n]})$$

Example: Rectangular pulse train with period T



We can now compute the coefficients,  $c_n$ , by writing the function y(t) in the form;

$$y(t) = \sum_{n=-\infty}^{+\infty} c_n e^{in\omega_0 t} \qquad \qquad \omega_0 = \frac{2\pi}{T} = 2\pi\nu_0 \quad \text{fundamental frequency}$$

The coefficients are then given as:

$$c_{n} = \frac{1}{T} \int_{-\tau/2}^{+\tau/2} A e^{-in\omega_{0}t} dt$$

$$c_{n} = \frac{A}{T} \int_{-\tau/2}^{+\tau/2} e^{-in\omega_{0}t} dt$$

$$c_{n} = \frac{A}{T} \frac{1}{-in\omega_{0}} e^{-in\omega_{0}t} \begin{vmatrix} +\tau/2 \\ -\tau/2 \end{vmatrix}$$

$$c_{n} = \frac{A}{T} \frac{1}{n\omega_{0}} (\sin n\omega_{0}t + i\cos n\omega_{0}t) \begin{vmatrix} +\tau/2 \\ -\tau/2 \end{vmatrix}$$

$$c_{n} = \frac{A}{n\pi} (\sin \frac{n\pi\tau}{T})$$

$$c_{0} = \lim_{n \to 0} \frac{A}{n\pi} (\sin \frac{n\pi\tau}{T})$$

$$c_0 = \frac{A\tau}{T}$$

And the magnitude and phase part of the coefficients are:

$$\left|c_{n}\right| = \left|\frac{A}{n\pi}\left(\sin\frac{n\pi\tau}{T}\right)\right|$$
$$\angle c_{n} = \tan^{-1}\left(\frac{0}{c_{n}}\right)$$

Let us now look at a specific example, for instance a pulsed radar signal for range and range rate determinations, and assume that:

$$T = 4ms$$
  

$$\tau = 1ms.$$

We get discrete values for  $c_n$  with an envelope that peaks at n=0 and has zero-crossings at

$$n\pi\tau/T = \pi$$

$$n\tau/T = 1$$

$$n\nu_0\tau = 1 \text{ with } T=2\pi/\omega_0 = 1/\nu_0$$

$$n\nu_0 = 1/\tau$$

$$= 1 \text{ kHz}$$

$$\nu_0 = 1/T$$

$$= 250 \text{ Hz}$$

$$n = 4$$

Plugging in several values of n, we get:

| n         | 0     | ±1    | ±2    | ±3    | ±4 | ±5    | ±6    | ±7    | ±8 | ±9    |
|-----------|-------|-------|-------|-------|----|-------|-------|-------|----|-------|
| $ c_n /A$ | 0.250 | 0.225 | 0.159 | 0.075 | 0  | 0.045 | 0.053 | 0.032 | 0  | 0.025 |
| $< c_n$   | 0     | 0     | 0     | 0     | -  | π     | π     | π     | -  | 0     |



Note: The phases at  $-3\omega_0$  to  $3\omega_0$  are zero, but the phases at  $-4\omega_0$  and  $4\omega_0$  are not defined. There is a difference!

Plots of the magnitude and phase of  $c_n$  are called <u>magnitude and phase spectra</u>. Now we are in a good shape to do some Fourier series mental gymnastics.

Here are some questions:

How do the magnitude and phase spectra change when we

- Increase A to 2A
- Increase T to 2T but leave  $\tau/T = 1/4$
- Increase  $\tau/T$  from  $\frac{1}{4}$  to 1/2
- Decrease  $\tau/T$  from  $\frac{1}{4}$  to 1/8

One of these gymnastic exercises is of particular interest:

Example: Unit impulse train  $\tau \rightarrow 0$ ,  $A\tau = 1$ , T=const.





#### Note:

For a periodic signal, the Fourier series is an accurate expression for <u>all time</u> even though the integration for the computation of the coefficients is carried out over only one period.



For a non-periodic signal, the fourier series is an accurate expression only <u>over the time</u> interval assumed to be one period.



### 1.3 Fourier transform

The exponential Fourier series (FS) is an extremely useful technique for the representation of <u>periodic</u> signals. They are also used for <u>non-periodic</u> signals for specific time intervals, or more generally, variable intervals, outside which the accuracy of the representation is unimportant.

The Fourier transform (FT) is used for the representation of a non-periodic signal that is valid for all time, or more generally, for the whole range of the variable.

The FT is obtained from the exponential FS via a limiting argument. Let us assume that we have an arbitrary function given below.



This is a non-periodic signal. To derive the FT from the FS we want to first consider the periodic version of this signal,  $y_T(t)$ , with period T, and its (assumed) spectrum,  $c_{n,T}$  as sketched below.



Hopefully we are sufficiently fit through our previous Fourier gymnastics that we can now answer the following question:

What happens with the spectrum if we increase the period T but leave the shape of the pulses unchanged?

If the period T is increased, the fundamental frequency,  $\omega_0$ , decreases, the spectrum becomes denser, but the shape of the envelope of the spectrum remains (save for a scaling factor) unchanged.

In the limit:  $T \rightarrow \infty$ ,  $f_T(t) \rightarrow f(t)$   $c_{n,T} \rightarrow Y(\omega)$ discrete spectrum  $\rightarrow$  continuous spectrum



y(t) and Y( $\omega$ ) are called: <u>FT pair</u> :  $y(t) \leftrightarrow Y(\omega)$ 

Alternative expressions, with  $\omega = 2\pi v$ , are:

$$y(t) = \int_{-\infty}^{+\infty} Y(v)e^{i2\pi vt}d\omega$$

$$Y(v) = \int_{-\infty}^{+\infty} y(t)e^{-i2\pi vt}dt$$
(should be dv)

In order for the FT to exist, we must have  $Y(\omega) < \infty$ . How can we find out?

- 1) Evaluate the integral
- 2) Consider Dirichlet conditions

### **Dirichlet Conditions:**

If  
1)  

$$\int_{-\infty}^{+\infty} |y(t)| dt < \infty$$
or  

$$\int_{-\infty}^{+\infty} |y(t)|^2 dt < \infty$$
and

2) y(t) has a finite number of maxima and minima in any finite interval, and3) y(t) has a finite number of discontinuities in any finite interval

then FT exists.

Note: If Dirichlet conditions are not fulfilled, then FT could perhaps still exist.

Examples

Here are four examples that do and do not fulfill the Dirichlet conditions:



Which do and which do not fulfill the Dirichlet conditions? Here is the answer: The first two do and the last two do not.

Now, let us compute the FTs.  $1^{st}$  example: FT of the gate function



Y( $\omega$ ) is a real function and has zero-crossings at  $\omega \tau/2 = \pm \pi, \pm 2\pi, \pm 3\pi, \ldots$ That means that we have zero-crossings at  $\omega = \pm 2\pi/\tau, \pm 4\pi/\tau, \pm 6\pi/\tau, \ldots$ 



We can also plot the magnitude and phase spectra:



$$\Pi(\frac{t}{\tau}) \Leftrightarrow \tau \sin c(\frac{\omega \tau}{2\pi})$$



The two other functions do not fulfill the Dirichlet conditions, however, their FT exists anyway. For the computation of the FT of these two other functions we need the  $\delta$ -function which is also called the unit impulse function:

$$\int_{-\infty}^{+\infty} \delta(t) dt = 1$$

#### <u>Properties of the $\delta$ -function</u>

1) Shifting property or sampling property:

$$\int_{-\infty}^{+\infty} f(t)\delta(t)dt = f(0)$$
  
$$\int_{-\infty}^{+\infty} f(t)\delta(t-t_0)dt = f(t_0)$$
  
$$\int_{-\infty}^{+\infty} f(t-t_1)\delta(t-t_2)dt = f(t_2-t_1)$$

2) Scaling property:  

$$\int_{-\infty}^{+\infty} f(t)\delta(at)dt = \frac{1}{|a|}f(0)$$

3) derivative property:  $\int_{-\infty}^{+\infty} f(t)\delta^{(n)}(t-t_0)dt = (-1)^n f^{(n)}(t)\Big|_{t=t_0}$ 

Now we can compute the FT of the  $\delta$ -function:

$$FT\{\delta(t)\} = \int_{-\infty}^{+\infty} \delta(t) e^{-i\omega t} dt$$
$$FT\{\delta(t)\} = 1$$

And since FT is unique,  $\delta(t)$  is the inverse FT of 1

$$\delta(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} 1e^{i\omega t} d\omega$$
$$\delta(t) \nleftrightarrow 1$$



Note: This result can also be obtained through a limiting argument;



FT of a constant:

$$FT\{1\} = \int_{-\infty}^{+\infty} 1e^{-i\omega t} dt$$

0

this is not absolutely integrable.  $\delta$ -function is needed. Also we have to do a change of variables to be able to use a previous equation.

$$t = -x \implies dt = -dx, \text{ interval boundaries need a sign change too.}$$

$$FT\{1\} = \int_{-(-\infty)}^{-(+\infty)} 1e^{-i\omega(-x)}(-dx)$$

$$FT\{1\} = \int_{-\infty}^{+\infty} 1e^{i\omega x} dx$$

$$FT\{1\} = 2\pi\delta(\omega)$$

$$1 \iff 2\pi\delta(\omega)$$

$$Y(\omega)$$

$$Y(\omega)$$

$$2\pi\delta(\omega)$$

Now it gets really exciting since we can now compute the FTs of the other two example functions.

t

0

ω

$$\frac{3^{rd} \text{ example: FT of the cos function}}{FT\{\cos\omega_0 t\} = \frac{1}{2}FT\{e^{i\omega_0 t} + e^{-i\omega_0 t}\}}$$

$$FT\{\cos\omega_0 t\} = \frac{1}{2} [\int_{-\infty}^{+\infty} e^{-i(\omega-\omega_0)t} dt + e^{-i(\omega+\omega_0)t} dt]$$
And again with change of variables:  $t = -x$ 

$$FT\{\cos\omega_0 t\} = \frac{1}{2} [\int_{-\infty}^{+\infty} e^{i(\omega-\omega_0)x} dx + e^{i(\omega+\omega_0)x} dx]$$

$$FT\{\cos\omega_0 t\} = \pi\delta(\omega-\omega_0) + \pi\delta(\omega+\omega_0)$$



#### Note:

The FT was originally defined for non-periodic signals. Now we find FT's also for certain periodic signals through the use of the  $\delta$ -function. In fact we can find the FT for any general, periodic function! The procedure is to write down the complex exponential FS for a function f(t) and then take the FT of the series on a term to term basis.

$$FT\{y(t)\} = FT\{\sum_{n=-\infty}^{+\infty} c_n e^{in\omega_0 t}\}$$
$$FT\{y(t)\} = \sum_{n=-\infty}^{+\infty} c_n FT\{e^{in\omega_0 t}\}$$
$$FT\{y(t)\} = 2\pi \sum_{n=-\infty}^{+\infty} c_n \delta(\omega - n\omega_0)$$

Example: Train of unit impulses

$$y(t) = \sum_{n=-\infty}^{+\infty} \delta(t - nT)$$
  
$$y(t) = \frac{1}{T} \sum_{n=-\infty}^{+\infty} e^{in\omega_0 t} \qquad (\text{see p.9})$$

$$Y(\omega) = \frac{2\pi}{T} \sum_{n=-\infty}^{+\infty} \delta(\omega - n\omega_0)$$



4<sup>th</sup> example: FT of the step function

 $u(t) = \frac{1}{2} + \frac{1}{2}$ sgn(t)

First we compute the FT of the sign function through a limiting argument.

$$\frac{sgn(t)}{t} \quad e^{-at}u(t), \quad a \ge 0$$

$$\operatorname{sgn}(t) = \lim_{a \to 0} [e^{-at}u(t) - e^{at}u(-t)]$$
  

$$\operatorname{FT}\{\operatorname{sgn}(t)\} = \lim_{a \to 0} [\int_{0}^{\infty} e^{-at}e^{-i\omega t}dt - \int_{-\infty}^{0} e^{at}e^{-i\omega t}dt]$$
  

$$\operatorname{FT}\{\operatorname{sgn}(t)\} = \lim_{a \to 0} [\int_{0}^{\infty} e^{-(a+i\omega)t}dt - \int_{-\infty}^{0} e^{+(a-i\omega)t}dt]$$
  

$$\operatorname{FT}\{\operatorname{sgn}(t)\} = \lim_{a \to 0} [-\frac{1}{a+i\omega}e^{-(a+i\omega)t}\left|\frac{\infty}{0} - \frac{1}{a-i\omega}e^{(a-i\omega)t}\right|\frac{0}{\infty}]$$

$$FT\{sgn(t)\} = \lim_{a \to 0} \left[\frac{1}{a + i\omega} - \frac{1}{a - i\omega}\right]$$
$$FT\{sgn(t)\} = \frac{2}{i\omega}$$
$$sgn(t) \Leftrightarrow \frac{2}{i\omega}$$

Now we can compute the FT of the step function.

$$FT\{\frac{1}{2}\} = \frac{1}{2}2\pi\delta(\omega)$$

$$FT\{u(t)\} = \pi\delta(\omega) + \frac{1}{i\omega}$$

$$\Re eFT\{u(t)\} = \pi\delta(\omega)$$

$$\Im mFT\{u(t)\} = -\frac{1}{\omega}$$



## 1.4 Properties of the Fourier transform

#### Symmetry property:

If  $f(t) \rightarrow F(\omega)$  then  $F(t) \rightarrow 2\pi f(-\omega)$ 

Example:  $sgn(t) \leftrightarrow 2/(i\omega)$ 

 $2/(it) \leftrightarrow 2\pi \operatorname{sgn}(-\omega)$  $i/(\pi t) \leftrightarrow \operatorname{sgn}(\omega)$ 

Linearity property:

If  $f_1(t) \leftrightarrow F_1(\omega)$  and  $f_2(t) \leftrightarrow F_2(\omega)$ , then for arbitrary constants a, b  $af_1(t) + b f_2(t) \leftrightarrow aF_1(\omega) + b F_2(\omega)$ 

Note: This is very useful, since it means that you can compute the FT in steps.

Time-shifting property:

If  

$$f(t) \nleftrightarrow F(\omega)$$
  
 $f(t - t_0) \nleftrightarrow F(\omega)e^{-i\omega t_0}$  then

Note: If

$$F(\omega) = |F(\omega)|e^{i\theta(\omega)}$$
$$f(t - t_0) \iff |F(\omega)|e^{i(\theta(\omega) - \omega t_0)}$$

A shift of t in the time domain leaves the magnitude spectrum unchanged, but the phase spectrum acquires an additional term -  $\omega t_0$ , see, for instance:

 $\cos\omega(t - t_0) = \cos(\omega t - \omega t_0)$ Example:



Frequency-shifting property:

If  

$$f(t) \Leftrightarrow F(\omega)$$
  
 $f(t)e^{i\omega_0 t} \Leftrightarrow F(\omega - \omega_0)$  then

Example 1:



In radio technology you often need to translate a spectrum to a different frequency range, e.g. baseband  $\rightarrow$  IF  $\rightarrow$  RF or RF  $\rightarrow$  IF  $\rightarrow$  baseband. This is achieved through the use of up and down-converters, or mixers.



Time-differentiation property

If  

$$f(t) \Leftrightarrow F(\omega)$$
  
then  
 $\frac{d}{dt} f(t) \Leftrightarrow i\omega F(\omega)$   
 $\frac{d^n}{dt^n} f(t) \Leftrightarrow (i\omega)^n F(\omega)$ 

Time-integration property

If  

$$f(t) \Leftrightarrow F(\omega)$$
  
then  
 $\int_{-\infty}^{t} f(x) dx \Leftrightarrow \frac{1}{i\omega} F(\omega) + \pi F(0) \delta(\omega)$ 

Scaling property

If  $f(t) \Leftrightarrow F(\omega)$ then for a real constant b

$$f(bt) \nleftrightarrow \frac{1}{|b|} F(\frac{\omega}{b})$$

Example:



### 1.5 The two-dimensional Fourier transform

So far we have used the variables, t and  $\omega$  or v in the context of FTs. These variables, time and frequency (radians per second and cycles per second) stand for physical quantities that are one-dimensional. However, in cases which are two-dimensional, an antenna, arrays of antennas, brightness distributions at the sky, pictures on a TV screen, etc., variables that describe two-dimensional quantities need to be used.

A two-dimensional function f(x,y) has a two-dimensional Fourier transform F(u,v) with

$$f(x,y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} F(u,v) e^{i2\pi(ux+vy)} du dv$$
$$F(u,v) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x,y) e^{-i2\pi(ux+vy)} dx dy$$

If x, y are spatial coordinates like angles, then u, v are called spatial frequencies.



#### Properties of the two-dimensional Fourier transform

The properties of the two-dimensional FT are very similar to those of the onedimensional FT. The most important for our purposes are:

<u>Linearity property:</u>  $af_1(x,y) + bf_2(x,y) \Leftrightarrow aF_1(u,v) + bF_2(u,v)$ 

Shifting property:  $f(x-a, y-b) \Leftrightarrow F(u, v)e^{-i2\pi(au+bv)}$ 

Modulation property:

$$f(x,y)e^{i\omega_0 x} \Leftrightarrow F(u - \frac{\omega_0}{2\pi}, v)$$

Scaling property:

$$f(ax,by) \Leftrightarrow \frac{1}{|ab|} F(\frac{u}{a},\frac{v}{b})$$

The extension to more than two dimensions is straight forward.