1. Signal Processing Fundamentals

1.1 Continuous and discrete signals

Fundamental to the study of radio science and techniques for space exploration is the
concept of a signal and how the signal is represented and processed. In this course we
want to use the word “signal” in the broadest possible sense.

A signal is the variation of a physically measurable quantity. Variations of the quantity
are manifestations of a particular process under study and have this process as their
cause.

Noise, in contrast, is a variation of the physically measurable quantity. However,
variations of the quantity are not a manifestation of a particular process under study and
have a frequently unknown process as their cause.

Examples of signals:
e The voltage fluctutions at the focus of a radio antenna tracking the Cassini
spacecraft.
e The current across a I Ohm resistor.

e The beam pattern of a radar antenna
e The ground displacements in continental drift

In electrical engineering a signal is often a function of time and/or space and can be
functionally represented.

Example: a continuous time signal:

y(t)

If we assume that the function y(t) has been sampled at regular intervals, At, then the set
of samples is called a time series. It consists of N known values, yi, k=1,2,3,.., N



Yk e R

or y[k]

k At

In the following we want to use parenteses for continuous functions and subscripts or
brackets for discrete functions. For instance:

y(t): continuous function
yk : discrete function
y[k]; discrete function

Some very fundamental continuous and discrete functions are:

Sign function

1,t>0 |
sgn(t) ={
-1, t<0 t
-1
|
L k20 ||
sgn[k] ={
1, k<0 ‘ ‘ k
-1




Step function

1,t>0
u(®) =1

0, t<0

1, k>0
ufk] ={

0, k<0

Ramp function

t, t >0
r(t) ={

0, t<0

k, k>0
r[k] ={

0, k<0




Delta function

oo, t =0
o(t) ={

0, t#0

+00

f 5@ = 1

1,k=0
o[k] ={

0, k#0

Some important relations are:

u(t) =% (1+sgn(t))
u[k]=1/2(1+sgn[k])

r(t) = t u(t)
r[k]=k u[k]

8(t) = d/dt u(t)
8[k] =u[k] — u[k-1], k<0
t
ut) =] 8(t) dt
"
uk]=% 8[k]

n=-00




1.2 Fourier Series

The representation of a function over a certain interval by a linear combination of
mutually orthogonal functions is called a Fourier series representation of a function.
Examples of sets of orthogonal functions are:

Trigonometric functions: sin nmot, COs nMot

Exponential functions: exp(1 nwot)

Legrendre polynomials: P.(t)=1/(2" n!) dvdt" (>-1)"
+T

Bessel functions: Jn(B)=1/2n) | exp(ip sin x — nx) dx
-1

One particular Fourier series we will use in this course is the exponential Fourier series. It
uses the functions { exp(i nwot) } n=0, £1, £2, +3,... which are orthogonal over the
interval (to ,to +T).

+00

y(H) = Y,

n=—00

to+T

1 .
C I t —lnwotdt
=T tf y(t)e

The magnitude and phase of the n'® harmonic are

c, =>Rez[cn]+Im2[cn]
Le, = tan‘l(Im[C”])
Relc, ]



Example: Rectangular pulse train with period T

y(t)
A

-t/20 t/2 T 2T t

We can now compute the coefficients, cn, by writing the function y(t) in the form;

+00

inwgyt
y (1) = Ecne ’ Wy = 2?" = 2nv, fundamental frequency

n=-—0o

The coefficients are then given as:

1 +T/2 '
c,=— fAe‘”“"O’dt
-T/2
[4>+r/2 .
c, == f e "' dt
]1—1/2
A 1 . |+T/2
cC =——— 0
" T -inw, -7/2
A1 . . +7/2
¢, =———(sInnw,t + icosnw,t
T nw, -T/2
c, = i(sin—mn)
niw T
. A . nat
C,y = sin
ol G



And the magnitude and phase part of the coefficients are:

c

n

(sin 7 )

A naT
ni

Lc, = tan‘l(g)
c

n

Let us now look at a specific example, for instance a pulsed radar signal for range and
range rate determinations, and assume that:

T =4ms
7= 1ms.

We get discrete values for ¢, with an envelope that peaks at n=0 and has zero-crossings at

nnt/T=n
nt/T =1
nvot =1 with T=21/®0 = 1/vo

nvo =1/t
=1 kHz
vo =1/T
=250 Hz
n =4

Plugging in several values of n, we get:

n 0 +1 12 13 +4 +5 16 +7 18 19
|col/A | 0.250 | 0.225 | 0.159 | 0.075 | 0 0.045 [ 0.053 1 0.032 | 0 0.025
< Cn 0 0 0 0 - T T T - 0




|Cn|/A

0.25 —/—
dwo 200 -o0 0 ®o 2m03w0 4mo kmo
T T < Cn
-dmo 200 -0 0 W0 2M0 300 40Mo kwo

Note: The phases at -3wo to 3wo are zero, but the phases at -4mo and 4wo are
not defined. There is a difference!

Plots of the magnitude and phase of ¢, are called magnitude and phase spectra.

Now we are in a good shape to do some Fourier series mental gymnastics.

Here are some questions:

How do the magnitude and phase spectra change when we
Increase A to 2A

Increase T to 2T but leave /T =1/4
Increase t/T from Y4 to 1/2

Decrease /T from Y to 1/8

One of these gymnastic exercises is of particular interest:

Example: Unit impulse train
>0, At =1, T=const.

y(t)




y(1)= Y81 ~nT)

o = 1 A (sinmn)
" r—>10,1:}1:1=1 nit T
A nmt

o
Il

= lim -

1
c,=—
T
y(t) = 1 Ew e
T =
|Cal
1/T |
-2M0 -0 0 ™o 2mo0 kwo
<Cn
Note:

For a periodic signal, the Fourier series is an accurate expression for all time even though
the integration for the computation of the coefficients is carried out over only one period.

“—>
T

For a non-periodic signal, the fourier series is an accurate expression only over the time
interval assumed to be one period.

A
v



1.3 Fourier transform

The exponential Fourier series (FS) is an extremely useful technique for the
representation of periodic signals. They are also used for non-periodic signals for specific
time intervals, or more generally, variable intervals, outside which the accuracy of the
representation is unimportant.

The Fourier transform (FT) is used for the representation of a non-periodic signal that is
valid for all time, or more generally, for the whole range of the variable.

The FT is obtained from the exponential FS via a limiting argument.
Let us assume that we have an arbitrary function given below.

y(®)

This is a non-periodic signal. To derive the FT from the FS we want to first consider the
periodic version of this signal, yr(t), with period T, and its (assumed) spectrum, ¢, as
sketched below.

< > t
T

\Cn,T

0 o koo

Hopefully we are sufficiently fit through our previous Fourier gymnastics that we can
now answer the following question:

10



What happens with the spectrum if we increase the period T but leave the shape of the
pulses unchanged?

If the period T is increased, the fundamental frequency, wo, decreases, the spectrum
becomes denser, but the shape of the envelope of the spectrum remains (save for a scaling
factor) unchanged.

In the limit:

T—o0,

fr(t) — f(t)

cn,T—> Y(®)

discrete spectrum — continuous spectrum

y()

Y(w) t

1 ¢ ;
(H=—® | Y(w)e“"dw
Y 2 _'£
Y(w)= [y(t)e ™ dt
y(t) and Y(w) are called: FT pair: y(t)«<> Y(w)
Alternative expressions, with o= 2nv, are:

y(1) = TY(v)e"de

o0 . (should be dv)
Y(V) = [ y(t)e ™™ dt

11



In order for the FT to exist, we must have Y(w) < oo.
How can we find out?

1) Evaluate the integral

2) Consider Dirichlet conditions

Dirichlet Conditions:

If
1)

f|y(t)| dt <o

or

[y@fdr<e

and

2) y(t) has a finite number of maxima and minima in any finite interval, and
3) y(t) has a finite number of discontinuities in any finite interval

then FT exists.

Note: If Dirichlet conditions are not fulfilled, then FT could perhaps still exist.
Examples

Here are four examples that do and do not fulfill the Dirichlet conditions:

y(t) 1,1t <1/2
1 y(O=II(t) ={

0, [t} >1/2

\ y(t=u(t)e™, a>0

N
Vv oV

y(H=u(t)
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Which do and which do not fulfill the Dirichlet conditions? Here is the answer: The first
two do and the last two do not.

Now, let us compute the FTs.
15t example: FT of the gate function

y(t) A, |t| £1/2
A y(t)=ATl(t/t) ={
0, [t| >t/2
/2 0 1/2 t
+T/2 .
Y(w)=A [e™dt
-T/2
Y(w) = _'Ae—iwf +7/2
110 —-7/2
A it —iwt
Y(w)=—(e *-e ?)
1w
Y(w) = %sinw—r
0] 2
sinwz
Y(w)= At
a)i

2

Y(m) is a real function and has zero-crossings at ot/2 = +m, £27, 37, ...
That means that we have zero-crossings at o=*2mn/t, +4n/t, +67/7, ...

Re{Y ()}

i N}

J/-\_
-6m/t -471/1\/2'75/ T 271/\/71/1 o/t

Im{Y (o)}
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We can also plot the magnitude and phase spectra:

/ Y(0)
I/\I/\ /\I NN

67/t An/t 2/t 21/t dn/t R
ZY (o)
T_|
| | | | |
-67/T -4r/t 2n/t 0 2n/t 4nt/t 67/t

The function of the form 32X plays an important role in signal theory.
X

sinJrx

sinc(x) =
JTX

Sinc function: t T
I[1(—) <= Tsinc(—)
T 27

1 sinc(x)

|/'\_
-3V\-5\/1 ( 1\/2 30X

. t .
For the gate function: I1(—) we can now write:
T

M) < rsine(X5)
T 27
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2md example: FT of the exponentially decaying function

AK y(H)=Au(t)e™, a>0

0 t

Y(w)=A f e~ gy
0

Y(a)) - _ A' e—(a+iw)t re
a+iw 0
Y(w) = A.
a+iw
Y(w)=—; s(a-iw)
a’+w
V(@)= 2 (@ + 0?)
a’+w
A
Y (w)| = —
(a* +w*)?

2Y(w)=tan" -2
a

LY (w)=—tan™ @
a

Y ()|
Ala

ZY (o)

-t/2 ——
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The two other functions do not fulfill the Dirichlet conditions, however, their FT exists
anyway. For the computation of the FT of these two other functions we need the
O-function which is also called the unit impulse function:

T@(t)dr =1

Properties of the d-function

1) Shifting property or sampling property:

[ fdndr = £(0)
[ F0d(t - 1)dr = f(z,)

Tf(t—tl)é(t—tz)dt =f(t,-t)

2) Scaling property:

[ Fdande = £0)

d

3) derivative property:

Tf (00" (1 = ty)dt = (=1)" £ (1)

=1,

Now we can compute the FT of the 5-function:

FT{5(t)} = Ta(t)e-"“”dt
FT{5(t)} -1

And since FT is unique, 9(t) is the inverse FT of 1
1
oty=— | le"dw
21 _{

5(t) < 1
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S (t) FT{5 (1)}

Note: This result can also be obtained through a limiting argument;

I (t) Y(w) = FT{II (1)}

A At=1 At=1

-t/2 0 /2 t 0 ®

FT of a constant:

FT{1} = f le™ ™ dt

this is not absolutely integrable. d-function is needed. Also we have to do a change of
variables to be able to use a previous equation.

t=-x =>dt=-dx, interval boundaries need a sign change too.
—(+»)

FT{1}= [le™"(~dx)
~(=)

FT{1} = [le" dx

FT{1} =2m6(w)
1 <> 2m6(w)

y(®) Y (o)
1 1 21d(m)

0 t 0 0]

Now it gets really exciting since we can now compute the FTs of the other two example
functions.

17



3" example: FT of the cos function

FT{cosw,t} = %FT{eiwot £ oo

| ‘
FT{cosw,t} = E[J‘e—mw_wo)zdt_l_ g0 g

And again with change of variables: t=-x

1 "~ . _
FT{COSCUOI} = E[j‘ez(cu—wo)xdx + ez(w+w0)xdx]

FT{cosw,t} = md(w — w,) + wé(w + w,)

y(t)=cos mot

/\
\VARVA

Note:

Y()

-0 0 o

The FT was originally defined for non-periodic signals. Now we find FT’s also for
certain periodic signals through the use of the d-function. In fact we can find the FT for
any general, periodic function! The procedure is to write down the complex exponential
FS for a function f{(t) and then take the FT of the series on a term to term basis.

FT{y()} =FT{ Y c,e""'}

FT{y(®)} = Y ¢,FT{""'}
FT{y(t)} =2n icné(w - nw,)

Example: Train of unit impulses

y(©) = 0t~ nT)

Nn=-—00
+00

y(t) =% 2 e

n=-—o0

(see p.9)

2T
Y(w) = 7% n;@é(w -nw,)

18



Y(w) =w, ié(w - nw,)

y(1) Y(o)

REARERN N

[e)

0 t

4™ example: FT of the step function

u(t) = % + %sgn(r)

First we compute the FT of the sign function through a limiting argument.

sgn(t)

g
.
‘e

e aty(p), a0

lllllll....... t

sgn(r) = |ymle “u(®) — e“ u(-1)]

a—0

0 0
FT{sgn(t)} = [iml [ e “e""dt - [ e“e dr]
a—=0 —o0
0

FT{sgn(¢)} = lim[fe—(anw)rdt_ f€+(a—iw)fdt]

a—0 0 S

1 oo 1 o

FT{sen(H)} =14 _ otarion| ™ ptamion| Y.
{sgn(n)} ]algl[ i R 1

19



. 1 1
FT{sgn(?)} = -
en=liml g i

FT{sgn()} =%

sgn(t) <> %

Now we can compute the FT of the step function.

I, 1
FT{E} = 527[6((0)

FT{u(t)} = mé(w) + L
iw
ReFT{u(t)} = 7é(w)

SmFT{u(t)} = -
(1))

u(t) 1 ,/U()

ZU(m)
/2

-1t/2

1.4 Properties of the Fourier transform

Symmetry property:

If f(t) ) <> F(®) then
F(t) ) ©2nf(-o)

Example:
sgn(t) ©>2/(im)

20



2/(it) <>2m sgn(-m)
i/(nt) <>sgn(m)

Linearity property:

If fi(t) & Fi(w) and
f2(t) <> F2(w), then for arbitrary constants a, b
afi(t) + b fa(t) <> aFi(w) + b F2(®)

Note: This is very useful, since it means that you can compute the FT in steps.

Time-shifting property:

If
f(1) <> F(w)

o then
ft-1,) < Flw)e™

Note: If

F(w)=|F (o)’

f(t=1)) < |F(w)

RIS

A shift of t in the time domain leaves the magnitude spectrum unchanged,
but the phase spectrum acquires an additional term - wto, see, for instance:

cosw(t —t,) = cos(wt — wt,)
Example:

f(t) ZF(®) | [F(w)|
ZF(®0)=6(w) i
— % = [EEE———
f{(t-t)o Ro) [[F(o)
| N J
0 to 0  ZLF(w)=
-mto

21



Frequency-shifting property:

If
f() < F(o) X
F(He™ < Fw-m) "
Example 1:

f(t) F(o)

t -Om ®m ®
lwgt
f(t)e |
M0 -Om M0 M0 TOm

Example 2:

f(t) F(o)

./

f(r)cos(w,t) /\ /l\

|
-0 ™o

In radio technology you often need to translate a spectrum to a different frequency range,
e.g. baseband — IF — RF or RF — IF — baseband. This is achieved through the use of
up and down-converters, or mixers.

22



mixer
cosmot f(t) cosmot

) 4

f(t)

Time-differentiation property

If
f(t) < F(w)

then

d .
Ef(t) iwF (w)

dl”l
dt"

f(@®) < (iw)"F(w)

Time-integration property

If

f(1) < F(w)

then

j f(x)dx < LF (w) + 7F (0)6(w)
< i

Scaling property

If
f(t) <= F(w)

then for a real constant b
1

f (o) <
4

w
F (z)

23
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Example:

f(t) F(w)

N\ AN
VoV o

-t/2 0 T/2 t
2n/t
1/t v
f(2t) e 1/|b| F(w/b)
-t/4 0 t/4 t 0 ®
4n/t
2/t v

1.5 The two-dimensional Fourier transform

So far we have used the variables, t and m or v in the context of FTs. These variables,
time and frequency (radians per second and cycles per second) stand for physical
quantities that are one-dimensional. However, in cases which are two-dimensional, an
antenna , arrays of antennas, brightness distributions at the sky, pictures on a TV screen,
etc., variables that describe two-dimensional quantities need to be used.

A two-dimensional function f(x,y) has a two-dimensional Fourier transform F(u,v) with

+00 400

fy) = [ [Fupy)e™ " dudy

—00 —00

400 400

F(u,v)=fff(x,y)e'iz”(”x+vy)dxdy

—00 —00

If x, y are spatial coordinates like angles, then u, v are called spatial frequencies.
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Example (only qualitative): ,/ \\ \
\ N - /
\ /
) @ V )
“X
f(x,y) ZF(u,v)
[F(u,v)|
/| “
X LJ u
RPN
N\ /\ |
\ : "

Properties of the two-dimensional Fourier transform

The properties of the two-dimensional FT are very similar to those of the one-
dimensional FT. The most important for our purposes are:

Linearity property:
af,(x,y) + bf,(x,y) <= aF,(u,v) + bF,(u,v)

Shifting property:
f(x _ a,y _ b) <> F(u’v)e—lZ.ﬂ?(au+bv)

Modulation property:

f(x’y)eiwox g F(I/t—— )

Scaling property:

1
f(ax.by) <
[ab)

F(— —)

The extension to more than two dimensions is straight forward.
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