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1.6 Linear systems, convolution and filtering 
 
We now want to turn our attention to the way in which signal properties are modified by 
various types of processing. 
 
Examples of signal processing devices are: 
 

• amplifiers 
• delay lines 
• mixers 
• filters 
• receivers 
• transmitters 
• antennae 
• antenna arrays 

 
 
Definition of a linear system: 
If r1(t), r2(t) produce system output responses  
y1(t), y2(t), respectively, then a system is said to be linear if 
ar1(t) + br2(t) produces the system output response 
ay1(t) +  by2(t), where a, b are constants. 
 
In general: a linear system modifies the amplitude and phase of each Fourier component 
of an input signal before it reaches the output. 
 
 
Input             Linear system              Output 
 
r(t)                        h(t)                         y(t)  
  
              
 
R(ω)                    H(ω)                       Y(ω) 
 
 
h(t):   impulse response 
H(ω): transfer function 
 
We can write: 

! 

R(")H(") =Y (") 
 
or in magnitude and phase form: 
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! 

R(") H(")ei(# r (" )+# h (" )) = Y (")e
i# y (" )

 

Definition of a time-invariant system: 
If r(t) applied at t=t0, produces a response of a system y(t), then the system is invariant  
If r(t-t1) applied at t=t0+t1 produces a response y(t-t1). 
 
Note:  

• Modification characteristics don’t change with time. 
• Output characteristics contain only those frequencies that are present in the input. 

No new frequencies are generated. 
 
 
Example of a linear system that is also time-invariant: 
 
            Acosω0t                                    Linear system                         ABcos(ω0t + θd)                                                                     

A 
                                                                                              AB        
 h(t) 
 
 

H(ω) 
 
 

                                                                              θd =-ωtd 

The linear system generated: 
• amplitude modification by B 
• phase shift by θd 
 

! 

H(") = Be
#i$

d  

 
Example: Delay line                                                       please note that: 

! 

H(") = Be
#i"t

d

H(") = B

$H(") = #"t
d

                                                            

! 

"H(#) = tan
$1 $sin#td

cos#t
d

"H(#) = $tan
$1
tan#t

d

"H(#) = $#t
d

 

 
 
                            ∠H(ω)  |H(ω)| 
 
                                     B 

                      
 
 
                                                                     
                                                                      ω 
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                                                                 θh=-ωtd 

 

 
Now let us assume that r(t) is just a cos-function; 

! 

r(t) = Acos"
0
t  

 
The its FT is 

! 

R(") = A#[$(" +"
0
) + (" %"

0
)]  

 
And the FT of the output of the linear system is: 

! 

R(")H(") = AB#[$(" +"
0
) + (" %"

0
)]e

%i"t
d  

 
In order to get the output of the linear system in the time domain, we need to compute the 
inverse FT 

! 

y(t) = FT-1{R(")H(")}

y(t) =
AB#

2#
$(" +"

0
)

%&

+&

'
( 
) 
* 

e
i"(t% td )d" + $(" %"

0
)

%&

+&

' e
i"(t% td )d" }

y(t) =
AB#

2#
$(" +"

0
)

%&

+&

' e
i"( t% td )d" + $(" %"

0
)

%&

+&

' e
i"( t% td )d"

( 
) 
* 

+ 
, 
- 

y(t) = AB
1

2
e
i" 0 ( t% td ) + e%i" 0 ( t% td ){ }

y(t) = ABcos"
0
(t % t

0
)

 

 
If we had an input signal, r(t) whose spectrum did not consist of only one frequency but 
Of a range of frequencies, then each of these frequencies would be delayed by td. and 
attenuated (or amplified) by B. The result is a signal delayed by  td  and attenuated by B. 
 
The exact signal shape is reproduced. This is distortion-less transmission. 

! 

y(t) = Br(t " td )  
 
In general, however, distortion cannot be avoided and in many cases is not even desired. 
 
Example: Low-pass filter 

 
                                R=103Ω 
 
 
 
  r(t)                             C=10-9f                            y(t) 
 
 
The transfer function of a particular low-pass filter is give by 
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! 

H(") =
1

1+ i"RC
 

 
 
 
 
Below is a plot of the magnitude and phase spectra 
 
 
 
 
                                                  ∠H(ω)      |H(ω)| 
                                                
 
 π/2 
 
 
 
                                                               0                                                 ω 
                                     
                                                       -π/2            
                                                        
 
 
Obviously, a low-pass filter has characteristics of distortion-less transmission only for a 
narrow bandwidth. 
 
Convolution: 
 
In order to get from r(t) to y(t) in our figure on p. 26, we can use the convolution integral. 
 

! 

y(t) = r(" )h(t # " )d"
#$

+$

% =  

         

! 

= r(t)" h(t)  
          
 
Special case:    r(t) = δ(t). Then 

! 

y(t) = "(# )h(t $ # )d#
$%

+%

&  

        

! 

= h(t)  
 
This is why h(t) is called impulse response. 
 
                        Proof (for pundits): 
                        We need to show: 
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! 

FT r(" )h(t # " )d"
#$

+$

%
& 
' 
( 

) 
* 
+ 

= R(,)H(,) 

                        There are two ways: 
1) We have to change the order of integration and make a change of                                                                       

     variables, λ = t - τ, so that dλ = dt, then                                             

                                                                

! 

r(" )h(t # " )d"
#$

+$

%
& 
' 
( 

) 
* 
+ #$

+$

% e
#i,t
dt =

r(") h(-)e# i,-d-
#$

+$

%
& 
' 
( 

) 
* 
+ #$

+$

% e
#i,"

dt = R(,)H(,)

 

 
 
  2) We can also use the shifting property of the FT 

                                       

! 

r(" )h(t # " )d"
#$

+$

%
& 
' 
( 

) 
* 
+ #$

+$

% e
#i,t
dt =

r(") h(t # " )e# i,tdt
#$

+$

%
& 
' 
( 

) 
* 
+ #$

+$

% d" =

 

      Then with the shifting property of the FT:      

! 

f (t " t
0
)# F($)e"i$t0  

     we get: 

                                                                         

! 

r(")H(#)
$%

+%

& e
$ i#"

d" = R(#)H(#)  

 
Laws of the convolution operation: 
 
∗ is communicative                   r ∗ h          = h ∗ r 
∗ is distriputive                         r ∗ [h1 + h2] = r ∗ h1 + r ∗ h2 

∗ is associative                          r ∗ [h1 ∗ h2] = [r ∗ h1] ∗ h2 

 
  just like multiplication! 
 
Theorems: 
 

! 

FT{r(t)" h(t)} = R(#)H(#)

FT{r(t)• h(t)} =
1

2$
R(#)"H(#)

 

 
Example of  a graphical convolution: 
 
Given two gate functions, f(t) and g(t) as shown in the figure below. What is  
the convolution of f(t) with g(t), i.e. y(t) = f(t)∗g(t). In other words, what is  
 

! 

y(t) = f (" )• g(t # ")d"
#$

+$

%       ? 
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                                                                              f(t)                         g(t) 
                                                                    2            
 
 
                                                                    1 
 
 
                          -3             -2           -1             0             1             2             3             4      t 
                                                                            
                                                                               f(τ) 
  
                                  g(-τ)                                                                                       y(t) = 0   
 
 
 
                                                                                                                                             τ 
                                           t=0 
 
                                               g(t-τ) 
                                                                                                                                y(t) = 0 
 
 
 
                                                                                                                                              τ 
                                           t=2 
 
                                               g(t-τ) 
                                                                                                                                y(t) = 1.2 
                                                                                                                                          (1x2x0.6) 
 
 
                                                                                                                                              τ 
                                           t=2.6 
 
                                              g(t-τ) 
                                                                                                                                y(t) = 2 
 (1x2x1)                  
 
 
                                                                                                                                              τ 
                                            
                                            t=3                   2          

        

! 

y(t) = f (" )• g(t # ")d"
#$

+$

%                   y(t) 

                                                                   1                                                                  
 
 
                          -3            -2           -1             0             1             2             3              4     t 
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Back to our example of the delay line with 

! 

r(t) = Acos"
0
t

H(") = Be
#i"t

d
 

 

! 

y(t) = r(t)" h(t)

h(t) = FT
#1
H($)

 

         

! 

=
B

2"
e
i#( t$ t

d
)
d#

$%

+%

&

= B'(t $ t
d
)

 

Then 

! 

y(t) = AB cos("
0

#$

+$

% & )'(t # td # & )d&  

To evaluate this integral we need to make use of the shifting and scaling properties of the 
δ-function (p. 16). 

                                                                               

! 

f (t)"
#$

+$

% (t # t
0
)dt = f (t

0
)

f (t)"
#$

+$

% (at)dt =
1

a
f (0)

 

 

! 

y(t) = ABcos["
0
(t # td )] 

 
So we see, that we come to the same result as on p. 28. 
 
 
 
Ideal low-pass filters 
 
                       

HLPF(ω) = { 

! 

Be
" i#t

d

0
     

! 

for.." #"s

,elsewhere
 

 
What is hLPF (t) ? 
 

! 

h
LPF
(t) =

1

2"
Be

i#(t$ t
d
)

$#
s

+#
s

%  
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! 

=
B

2"

1

i(t # t
d
)
e
i$(t# t

d
)( )

#$
s

+$
s

=
B

"

1

(t # t
d
)
[
1

2i
e
i$

s
(t# t

d
)
# e

#i$
s
( t# t

d
)( )]

=
B

"

1

(t # t
d
)
sin$

s
(t # t

d
)

=
B

$
s
"

sin$
s
(t # t

d
)

$
s
(t # t

d
)

                                                                                                                  

 
 
                      ∠H(ω)  |H(ω)|                                                 h(t) 
                               B                                              Bωs/π                                                         

 
 
 
 
                -ωs  ωs                                                    

                                                                            -  ω td                                                      td-π/ωs   td  td+π/ω 
Note: for | ωs| →∞   h(t) → B δ(t-td) 
 
 
 
Physically realizable filters 
 
For a physically realizable filter, h(t) must be causal or non-anticipatory, i.e. 
h(t) = 0  for t < 0. 
To be physically realizable we must find filters with a transfer function  
h*(t) = h(t)u(t). 
                                                                                              
                                                                                             h*(t) 
 
 
 
 
                                                                                                            td 

 
However, such a manipulation will distort H*(t). Distortiions could be minimized if td is 
increased. For practical purposes, if td ∼ 2 to 3 times π/ωs, then h*(t) is a close version of 
h(t). In radio technology, there are three examples of low-pass filters that minimize 
distortions and have principally different characteristics. 
 

• Butterworth filter:       constant gain 
• Bessel filter:                linear phase 
• Chebyshev filter:         good attenuation outside passband 
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Butterworth filter 
 
   |H(ω)| 

 
 
 
 
 
 
 
                                                            ω 
 
          ∠H(ω) 
         
 
 
 
 
 
 
 
 
 
Bessel filter 
 
         |H(ω)| 
 
 
 
 
 
 
 
 
        ∠H(ω) 
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Chebyshev filter 

 
        |H(ω)| 

 
 
 
 
 
 

 
 
         ∠H(ω) 
 
 
 
 
 
 
 
 
 
Example of a signal distortion in a filter 
 
Suppose we have a filter with the magnitude of the transfer function being ideal and with 
the phase of the transfer function being distorted. 
 
 
 
                         ∠H(ω)  |H(ω)| 
                                   1 
 
 
 
 
    -ωs                          0                            ωs 

 

                                                                                        θh(ω) 
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! 

H(") =
0, for " >" s

1, for " #" s{
$h (") =

undefined .................. for " >" s

%"td %k sin"T ,......... for " #" s{
H(") = H(")ei$ h (" )

H(") =1e%i"td e%ik sin"T ,..... for" #"s,= 0.. for" >"s

H(") = e% i"td e% ik sin"T&(
"

2"s

)

 

 
If the distortion is small so that k << 1 , then we can write 
 
                                                           

! 

e
"ik sin#T

=1" ik sin#T  
                                                                        

! 

=1" ik
1

2i
(e

i#T
" e

"i#T
) 

 
What is then the output y(t) of our filter for any arbitrary input r(t)? 
 

! 

y(t) = FT
-1
{R(")H(")} 

 

         

! 

= FT
-1
{R(")e# i"td 1#

k

2
(e

i"T # e#i"T )$(
"

2"
s

)
% 

& 
' 

( 

) 
* }

= FT
-1
{[R(")e# i"td #

k

2
R(")ei"( td #T ) +

k

2
R(")ei"( td +T )

]$(
"

2"
s

)

= [r(t # t
d
) #

k

2
r(t # (t

d
#T)) +

k

2
r(t # (t

d
+ T))]+

1

2,
2"

s

sin"
s
t

"
s
t

 

(also see p. 33). 
 

! 

yunconv (t) = [r(t " td ) "
k

2
r(t " (td "T)) +

k

2
r(t " (td + T))]

y(t) = yunconv (t)#
1

2$
2%s

sin%st

%st

 

 
Let us now assume a particular form for r(t), say as what is shown in the figure below. 
 
 
 r(t) 
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Then, yunconv(t) will be 
 
 
 yunconv(t) 
 
 
 
 
 
 
                                                                     td                 td+T 
                                              td-T 
 
And, y(t) will be (with an educated guess) approximately 
 
 
 yunconv(t) 
 
 
 
 
 
 
                                              td-T                 td                 td+T 
 
Now imagine that you have a digitized message with a sequence of pulses. 
These echos pictured above could interfere with the leading and the trailing pulse and 
cause “intersymbol interference in communications systems. How can that be avoided? 
By using appropriate filters in networks that minimize distortions. Note: an ideal filter 
would not be necessarily appropriate either, since the delayed pulse would still be 
convolved with a sinc function that leads to “ringing.” What is used in practice are 
“raised cosine filters.” 
 
 
Rise time of an ideal low-pass filter 
 
We measure the rise time of a filter by applying a step function to the filter input 
terminals and monitoring the output, y(t) 
 
 
 u(t)                       
                                                              h(t) 
                                                                                                    y(t) 
 
                                                             H(ω) 
 
 
 
The rise time of the filter is then given by the time it takes y(t) to go from its minimum to 
its maximum. 
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y(t)=u(t)∗h(t) 
      =h(t)∗u(t) 

      

! 

= h(")u(t # ")d"
#$

+$

%  

Let’s do the graphical convolution. 
 
 
                                                       h(τ) 
 
 
 
 
 
 
  τ 
 u(t-τ) 
 
 
 

τ 
 

 shift parameter t 
 
 
 
 y(t) 
 
 
 
 
 
 
 

t 
 tr 
 

                                   td-π/ωs              td              td-π/ωs 

 

 

 
tr=2π/ωs 

   =1/Δν 
Example: Δν = 1 MHz 
                    tr= 1 µs 
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Example: Dispersion of a pulse in a plasma 
 

                             Plasma 
 
r(t)                 h(t)                         y(t)  
  
           
 
R(ω)             H(ω)                       Y(ω) 
 
 
I I 
 
 
 
 
 
 
                  t                                                                                                                t  
 
 
                                             ν 
 
 
 
 
 
 
           Δν = 10 MHz       
 
 
 
 
 
 
 
 
 
 
                               
                                                                                                                                      t 

 
 The plasma is dispersive meaning that the phase of  its transfer function is a function of 
frequency, ν. That has the effect that pulses emitted at a higher frequency will arrive 
earlier and pulses at a lower frequency will arrive later. Now suppose that we have a 
radio antenna with a receiver that has a bandwidth Δν, say 10 MHz. Within this 
bandwidth, the pulse will arrive at a time dependent on frequency. For the ionosphere or 
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for interplanetary or interstellar space, the arrival time is approximately proportional to 
1/ν2. The received signal, y(t), will therefore be a smeared-out version of r(t). How can 
we recover r(t)? 
 
There are two possibilities: 

1. Use a filter bank. Each filter has a bandwidth, ΔνI,<< Δν and a  center frequency 
that is offset from the adjacent filters in such a way that the banwidths of all the 
filters will just cover the bandwidth of the receiver. In effect we have chopped the 
receiver bandwidth of 10 MHz into smaller bandwidths, say 10 times 1 MHz. 
With such a filter bank we could record the output of the individual filters 
separately and shift the output of each filter in time so that the delay discrepancies 
are compensated for. 

 
 
 
 
 
 
 
 
 

Δν = 10 MHz 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
The result is a pulse that is dedispersed – but only to a certain degree. Why? Because the 
pulse from each filter of the filter bank is still dispersed, only over a bandwidth of 1 MHz 
as in our example, but still measurable? For instance, in our figure above, the pulse is still 
a bit smeared out. 
 
How can we dedisperse the pulse completely? We could build a filter bank with a larger 
number of filters and narrow the bandwidth of the individual filters. Say, we could use 
100 filters with each having a bandwidth of 100 kHz. Or we could build 1000 filters for 
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the filter bank with each filter having a bandwidth of just 10 kHz. However, the problem 
is that the narrower we choose the bandwidth, the longer the rise time of the individual 
filters become. If our original pulse, r(t), has e.g. a duration of only 1 µs, then a filter with 
a bandwidth of 10 kHz would broaden the pulse to the rise time of the filter which is  
100 µs. In this case, a filter bank would not be useful. 
 

2. The second possibility is to dedisperse r(t) directly.  
• Record    y(t) = r(t) ∗ h(t), that is the signal r(t) dispersed by the plasma          
• Compute Y(ω) 
• Compute Y(ω) H-1(ω) = R(ω) 
• Compute  r(t) 

  
This technique has been used  successfully for the dedispersion of ultra-short     
pulses from a neutron star. Pulses with a duration of less than 10 ns could be 
recovered. See www.yorku.ca/bartel and click on “in the news” under pulsars. 
Then click on New Scientist. 

 
Dispersed signals are very common in radio science and radio technology. In radar 
technology, chirp filters are used for a variety of applications. These filters can be used as 
“compressors” as they concentrate energy into a narrow bandwidth. Other technologies 
worth mentioning are acousto-optic spectrometers which have also dispersive or 
dedispersive characteristics. 
 
 
 
 
1.7 Energy, power and their spectral densities 
 
      Time-domain expressions 
 
Total energy of a signal f(t) in time interval t1 < t ≤ t2 

! 

E = f (t) f
"

t1

t2

# (t)dt = f (t)
2
dt

t1

t2

#  

 
Total energy of f(t) over all time 

! 

E" = f (t) f
#

$"

+"

% (t)dt = f (t)
2
dt

$"

+"

%  

 
If the signal exists over the entire interval (-∞, +∞), we need to use the power instead of 
the energy. The power, P, is defined as; 
 
Power of f(t) in time interval t1 < t ≤ t2 

! 

P =
1

t
2
" t

1

f (t) f
#

t1

t2

$ (t)dt =
1

t
2
" t

1

f (t)
2
dt

t1

t2

$  
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Power of f(t) over all time: 

! 

P" = lim
T#"

1

T
f (t) f

$

%T / 2

+T / 2

& (t)dt  

 
We now define: 
 
Energy signal f(t): E∞ < ∞      (=> P∞ = 0) 
Power signal   f(t): P∞ < ∞      (<= E∞ = ∞) 
 
 
Frequency-domain expressions for E∞  - Parseval’s theorem 
 

! 

E" = f (t) f
#

$"

+"

% (t)dt  

       

! 

= f (t)
1

2"
F
*
(#)e$i#td#
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* 
+ 
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+%
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=
1

2"
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*
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&
' 
( 
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* 
+ 
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& d#

=
1
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F
*
(#)F(#)d#

$%

+%

&

=
1

2"
F(#)

2
d#

$%

+%

&

 

 
 
 

! 

F(")
2

  is called:    energy density spectrum or energy spectral density 
 
 
 
Frequency-domain expressions for P∞ 

 

Since for some signals, E∞=∞, i.e. 

! 

f (t)
2
dt

"#

+#

$ =# , then, according to the Dirichlet 

conditions, f(t) is not necessarily Fourier transformable. Therefore we have to consider 
the truncated signal fT(t). 
 

! 

fT (t) =
0,elsewhere

f (t ), t<T / 2{  
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                                                                       f(t) 
 
 
 

 
 
 

      fT(t) 
 

 
 
 
 
 
 -T/2 +T/2 
 

! 

P" = lim
T#"

1

T
f (t) f

$

%T / 2

+T / 2

& (t)dt  

      

! 

= lim
T"#

1

T

1

2$
FT (%)

2
d%

&#

+#

'

=
1

2$
lim
T"#

1

T
FT (%)

2( 
) 
* 

+ 
, 
- 
d%

&#

+#

'

=
1

2$
S f (%)d%

&#

+#

'

 

 
 
 

! 

S f (") = lim
T#$

1

T
FT (")

2

     is called power  density spectrum or power spectral density 

(PSD) 
 
 
 
How is the output power spectral density related to the input power spectral density? 
 
 

 

! 

lim
T"#

   fT(t)                 h(t)                         y(t)  
  
     
 
 

! 

lim
T"#

 FT(ω)                H(ω)                     Y(ω) 
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! 

P",y = lim
T#"

1

T
y(t)

$T / 2

+T / 2

%
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'
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1

T
F
T
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! 

Sy (") = H(")
2
S f (")  

 
Output power spectral density is equal to the magnitude of transfer function squared 
times the input power spectral density. 
 
 
 
We have seen that E∞ for a signal can be computed in the time domain as well as in the 
frequency domain. If we compute E∞ in the frequency domain, we need the energy 
spectral density (ESD). 
 
There are two ways to compute the ESD. 

1) compute the FT of f(t), namely F(ω) and then | F(ω)|2 
2) compute the autocorrelation function Cff(t) and then its FT 

which is | F(ω)|2 
 

 

            

! 

f (t)                            

! 

Cff (t)  
 
 

             

! 

F(")           

! 

F(")
2

 
 
 
autocorrelation function of f(t): ACF 

! 

Cff (t) = f
*
(") f (t + ")d"

#$

+$

%         

 
Note: Sometimes the above function is called autocovariance function and the 

normalized autocovariance function, 

! 

Cff (t)

Cff (0)
, is then called the autocorrelation function. 
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Wiener-Khinchine Theorem: 
 

! 

Cff (t)" F(#)
2

 
 
 
 
There are two ways to compute the PSD. 

3) compute the FT of fT(t), namely FT(ω) and then Sf(ω). 
4) compute the time-averaged autocorrelation function and then its 

FT which is Sf(ω). 
 

     

! 

lim
T"#

fT (t)                             

! 

C ff (t)  
 
 
 

  

! 

lim
T"#

F
T
($)              

! 

S f (")  
 
 
 time-averaged autocorrelation function of f(t): 

! 

C ff (t) = lim
T "#

1

T
f
*
($ ) f (t + $ )d$

%T / 2

+T / 2

&

C ff (t)' S f (()
 

 
The ACF has a number of important properties 

1. For signals, f(t) with a zero mean, 

! 

f = 0, with 

! 

f = lim
T "#

1

T
f (t)dt

$T / 2

+T / 2

% , the 

ACF at t=0 (zero lag) equals the signal variance: 

      

! 

C ff (0) = lim
T "#

1

T
f
*
($ ) f ($ )d$

%T / 2

+T / 2

&  

                 

! 

=" f

2  
2. The ACF is hermitian: 
      

! 

Cff ("t) = Cff

#
(t) 

      

! 

Cff ("t) = Cff (t)     for f(t) : real 
 
3.   If f(t) has an ACF Cff(t), then f(t-t0) has also the ACF Cff(t), i.e. it is  
unchanged. 
 

4. The normalized ACF, 

! 

Cff (t)

Cff (0)
 or  

! 

C ff (t)

C ff (0)
 is equal to 1 at t=0. 
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ACF’s  are widely used in radio sciences and radio technology - apart from being used 
for the computation of the ESD and the PSD. For instance, the ACF can be used to define 
statistically meaningful pulse widths. If for instance a pulse, as that given below, is to be 
analyzed in terms of a typical fluctuation duration, we could use the ACF. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     Average profile                                                Average ACF 
 
 
 
 
 
                                                                                          typical 3dB width 
 
If we have two complex functions, f(t) and g(t), we can define the  
cross-correlation function (CCF) 
 

! 

Cfg (t) = f
*
(")g(t + ")d"

#$

+$

%  

and the time-averaged cross-correlation function 

! 

C fg (t) = lim
T "#

1

T
f
*
($ )g(t + $ )d$

%T / 2

+T / 2

&  

 
The normalized CCF can be defined as follows: 

! 

Cfg (t)

Cff (0)Cgg (0))
   or   

! 

C fg (t)

C ff (0)C gg (0))
 

 
 
As with the ACF we can write: 
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! 

Cfg (t)  
 
 
 
  

! 

F("),G(")           

! 

F
"
(#)G(#)  

 
And similarly: 
 
 

! 

lim
T"#

fT (t), lim
T"#

gT (t)                               

! 

C fg (t)  

 
 
 

! 

lim
T"#

F
T
($), lim

T"#
G
T
($)                              

! 

S fg (") 
 
 
where Sfg(ω) is called the crosspower spectral density with 
 

! 

S fg (") = lim
T#$

FT
*
(")GT (")  

 
 
 
CCF’s  are also widely used in radio sciences and radio technology - apart from being 
used for the computation of the functions above. For instance, the CCF can be used to 
determine the time lag between two similar signals. 
 
                            f(t) g(t) 
 
 
 
 
                         0                                 t                             0                   t0                 t 
                           f(t)⊗g(t) 
 
 
 
 
                        0                    t0                     t 
 
 

! 

f ( t),g( t)
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Determining the lag or time delay between signals is for instance used in radio 
interferometry. An exact determination of the delay, t0, will lead to an exact 
determination of  the position of an object in the sky provided the baseline vector, B, is 
known.  
 
Simple two-element interferometer: 
 
 
 
 
 
 
 
                       c t0 
 
 
 
                        
                         α 
                                                    B 
 
 
 
 
 
Interferometers are used in astrometry, astronomy, geodesy, geophysics and spacecraft 
navigation. 
 
 
 
 
 
 
 
 
Comparison between convolution and correlation 
 
Convolution operator  ∗ 
Correlation operator   ⊗ 
 
                             Given two complex functions, f(t) and g(t). 

                                

! 

f (t)" g(t) = f
*

#$

+$

% (t + &)g(&)d&  

                             with τ = -τ’, and dτ = -dτ’ we get 

                                

! 

f (t)" g(t) = f
*

#(#$)

#(+$)

% (#& ')g(t # & ')(#d& ') 



 49 

                                                  

! 

= f
*

"#

+#

$ ("% ')g(t " % ')d% '

= f
*
("t)& g(t)

 

 
 
For real functions, f(t), g(t) 
 

! 

f (t)" g(t) = f (#t)$ g(t)  
 
For real functions, f(t), g(t), with at least one function being symmetrical 

! 

f (t)" g(t) = f (t)# g(t)  


