1.8 The sampling theorem

The rise time of a filter is closely related to the sampling theorem. Assume that we have
an ideal lowpass linear filter with bandwidth, B, and an output signal y(t), and sample
y(t) at a sampling frequency, v, to get the sampled signal ys(t).
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(We will not consider the phase)
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y(t) can be fully recovered if the sampling frequency, v, is equal or greater than 2B

Nyquist frequency: VN = 2B

Sampling theorem:
Any bandlimited function, g(t) with
G(w), |o] £2nB
FT {g(t)} =
0, elsewhere
Can be recovered exactly from its samples taken at a rate of 2B samples/ sec or faster.
Proof:

Given: g(t) <> G(») with G(w) =0 for ® >2B

g(t) G(w)




Sampling g(t) every Ts seconds means multiplying g(t) by a unit impulse train, or a train of 6
functions.
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Using the FS for the impulse train gives us:
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Now we need to use a low-pass filter Gs(m) so that all lobes but the center lobe are rejected.
Then FT1 {1/T: G(w)} = 1/Ts g(t) and we have recovered g(t) from gs(t) with the condition that
there is no overlap of the adjacent spectra.

Condition:
2T 4B Py o<t
B g = s=72B



How does the recovering process look in the time domain?
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What happens if there is an overlap of the spectra Gs(w) with Ts >1/(2B)?
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Lost tail gets folded back

It is not possible to recover g(t) from gs(t) by any means.

If gs(t) is passed through a low-pass filter, we get a spectrum that is a distorted version of G(®)
because:

1) Loss of the tail of G(®) beyond || =% ;s
2) Inversion of folding of the same tail onto the spectrum at the cutoff frequency.

Tail inversion: spectral folding or aliasing




Question:
You film a Formula | racing car passing by and see the wheels going backwards. How can that be
explained?

Spectrum of rotating wheel G(o)
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Low-pass filtered Gs(m)




