
1.8 The sampling theorem 
 
The rise time of a filter is closely related to the sampling theorem. Assume that we have 
an ideal lowpass linear filter with bandwidth, B, and an output signal y(t), and sample 
y(t) at a sampling frequency, 𝜈! to get the sampled signal ys(t). 
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y(t) can be fully recovered if the sampling frequency, ns, is equal or greater than 2B 

Nyquist frequency:   nN = 2B 
 
Sampling theorem: 
 
Any bandlimited function, g(t) with 
 
                      G(w),  |w| £ 2pB 
FT {g(t)}  = 
                       0,   elsewhere 
 
Can be recovered exactly from its samples taken at a rate of 2B samples/ sec or faster. 
 
Proof: 
 
Given: g(t) « G(w)                     with G(w)     =0 for w ³ 2B                 
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Sampling g(t) every Ts  seconds means multiplying g(t) by a unit impulse train, or a train of d 
functions. 
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Using the FS for the impulse train gives us: 
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Now we need to use a low-pass filter Gs(w) so that all lobes but the center lobe are rejected. 
Then FT-1 {1/Ts G(w)} = 1/Ts g(t) and we have recovered g(t) from gs(t) with the condition that 
there is no overlap of the adjacent spectra. 
 
Condition: 
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How does the recovering process look in the time domain? 
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What happens if there is an overlap of the spectra Gs(w) with Ts   >1/(2B)? 
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 Lost tail gets folded back 
 
 
It is not possible to recover g(t) from gs(t) by any means. 
 
If gs(t) is passed through a low-pass filter, we get a spectrum that is a distorted version of G(w) 
because: 
 

1) Loss of the tail of G(w) beyond |w| ³ ½ ws 
2) Inversion of folding of the same tail onto the spectrum at the cutoff frequency. 

 
 
Tail inversion: spectral folding or aliasing 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Question: 
You film a Formula I racing car passing by and see the wheels going backwards. How can that be 
explained? 
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Eye transfer function 
 
 
Low-pass filtered Gs(w) 


