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2 Radio Astronomy Fundamentals 
2.1 Introduction 
 
The atmosphere is transparent to only two bands of the electromagnetic spectrum: optical 
and radio bands. 
 
Optical band:   0.4 –0.8 µm      (factor 2 in wavelength coverage) 
Radio band  : 1 cm – 10 m        (factor 1000 in wavelength coverage) 
 
The development of radio astronomy technology and early telephone and satellite 
communications have always been closely related.The science of radio astronomy started 
with Karl Jansky in 1931. Jansky was a radio engineer at Bell Telephone Labs. He 
studied thunderstorm static to improve transoceanic telephone circuits. He built an 
antenna operating at 20.5 MHz (14.6 m) and found static from local and distant 
thunderstorms. In addition he found a “steady  hiss-type static of unknown origin,” first 
seen in 1932. By 1935 he realized that the static came from outside the solar system. 
 
Grote Reber, a radio engineer, built a parabolic reflector antenna with a 9.5 m diameter. 
He studied the static at 160 MHz (1.87 m) with much better angular resolution than 
Jansky. The beamwidth of his telescope at that frequency was Θ3dB = 12° . The 3-dB 
beamwidth is also sometimes given as the full-width at half maximum (FWHM).He 
identified the center of our Galaxy, the Milky Way, which is a strong emitter of radio 
waves. In addition he also identified other strong radio sources at the sky. 
 
Oort at the Leiden observatory in The Netherlands realized that the static must be 
continuum radiation (and not spectral line radiation) extending over the whole radio 
spectrum from at least 1 m to many m in wavelength. He also realized that looking for a 
spectral line in the radio would be groundbreaking. 
 
In 1944 van der Hulst suggested that the hyperfine transition of neutral hydrogen in the 
universe may be observable. 
 
                                      p                            e 
 
 
                                                                             
                                                                           21 cm spectral line 
                                                                              1.4 GHz 
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1951 Ewen and Purcell (Harvard university) detected the line in emission. A few weeks 
later also Muller and Oort and in 1952 Christianson and Hindman in Sydney (Australia). 
 
With the HI line (H for hydrogen, I for neutral, by the way HII would stand for ionized 
hydrogen) detected, the Galaxy structure could be mapped and its spiral structure 
discovered. 
 
Large radio antennas were built: 
 
76m at Jodrell Bank, England (end of 1950’s) 
46m in Algonquin Park (beginning of 1960’s) 
64m at Parkes, Australia (beginning of 1960’s) 
70m for the NASA DSN in Goldstone, CA, USA, Robledo, Spain, and Tidbinbilla,  
         Australia (1960’s) 
100m at Effelsberg, Germany (end of 1960’s) 
110m at Green Bank, VW, USA (2000’s) 
 
and then arrays of antennas: 
 
27x25m array, VLA at Socorro, NM, USA (1970’s)  
several 6m antenna array at Penticton, BC, Canada 
 
In 1963 Penzias and Wilson (Bell Labs) wanted to improve satellite communications. 
They built a big horn antenna to achieve a low antenna temperature. But they experienced 
unexplainable hiss. To find the origin of the hiss, they even looked for pigeon droppings 
in the antenna. However, the cause of the hiss could not be pinpointed. 
 
Then in 1965 it was realized that the hiss was of cosmological origin. It was caused by 
the 3K microwave background radiation from the early universe. Penzias and Wilson 
were awarded the Nobel prize for their discovery. 
 
In 1967 A. Hewish with J. Bell discovered pulsars. M. Ryle developed the aperture 
synthesis technique. Hewish and Ryle were awarded the Nobel prize in 1974. 
 
In 1974 Hulse and Taylor discovered the first binary pulsar. By carefully measuring the 
decay of the binary orbit they could show that the energy lost in the decay was equal to 
the energy expected to be radiated away from the binary system in the form of 
gravitational waves. This was the first (indirect) evidence for the existence of 
gravitational waves as predicted by Einstein’s theory of general relativity. Hulse and 
Taylor received the Nobel prize in 1993. 
 
 
 
2.2 Power, spectral power, brightness and flux density 
 
Consider EM radiation from the sky falling on a flat horizontal area as sketched below. 
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The infinitesimal power dW from a solid angle dΩ of the sky incident on a surface of 
area dA is: 
 
dW = B cosθ dΩ dA dν 
 
dW : infinitesimal power [W] 
B    : brightness of sky at position of dΩ (also called surface brightness [Wm-2Hz-1rad-2] 
dΩ  : infinitesimal solid angle of sky [rad2] 
θ     : angle between dΩ and zenith [rad] 
φ     : angle in the plane of the surface from reference direction to local meridian. 
dA  : infinitesimal area of surface [m2] 
dν   : infinitesimal element of bandwidth [Hz] 
 
 
The power received on a surface of effective area, A, from a solid angle, Ω, over a 
bandwidth, Δν, is: 
 

! 

W = Aeff Bcos"d#d$
$

$ +%$

&
#

&&

w = Aeff B
#

&& cos"d#

 

 
W  is measured in [W] 
W  is measured in [W Hz-1] 
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Example: 
B(θ, φ, ν)  is uniform over the bandwidth Δν and uniform over the sky. Find the total power 
and spectral power received by a horizontal surface of 5 m2 effective area at frequency ν with 
Δν = 1 MHz. B = 10-22 [Wm-2Hz-1rad-2] 
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W = Aeff Bcos"d#d$
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we get: 
 

! 

W = Aeff B"#$

w = Aeff B"
 

 
W = 15.7  10-16 W 
W = 15.7  10-22 W Hz-1 

 

 
 
 
Brightness distribution 
 
In general the brightness depends on θ and φ, and we call B(θ, φ) the brightness 
distribution. In addition we want to introduce two more parameters: 
 
Aeff : effective aperture. With η as the efficiency of  an antenna (recall  PHYS 3250), the 

Effective aperture is simply the geometric aperture multiplied with the efficiency 
which is typically 0.5 to 0.8 for paraboloidal antennas. 

 
Pn(θ,φ): power pattern of the beam of the antenna, normalized so that Pn(0, 0) = 1. It        

replaces the factor cos θ.  For an isotropic antenna: Pn(θ,φ) = 1.  The power 
pattern depends on ν, so Pn(θ, φ) = Pn(θ,φ,ν). We will get to the frequency 
dependence later. For now we will not deal with the frequency dependence. 

 
We will now adjust the orientation of our surface with area A and effective area Aeff so 
that it is normal to the vector B. In other words, we are pointing our surface with its flat 
side toward the source of radiation. 
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                                                       θ = 0 
 
                                                                                                         celestial sphere                                                                        
          B(θ, φ)                                           dΩ 
                                                                                                                                 
                                      Pn(0, 0)          θ 
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                                           Aeff 
 
 
                      φ 
              
 
 
            φ = 0                       
 
 
In general, the surface brightness, or simply the brightness, is both a function of the position 
in the sky and the frequency: 
 
 B(θ, φ) = B(θ, φ, ν)         
 
 
Discrete sources: 
 
A discrete radio source is one which is distinct or separate. We have: 
 
1) extended sources 
2) point sources 
 
for any discrete source, integrating B over the extent of the source gives the flux density, S 
 

! 

S = B(",#)d$
source

%%  

 
The unit of flux density is Jy (Jansky). 
1Jy = 10-26 W m -2  Hz -1 

 

If the source is observed with an antenna with a beam pattern Pn(θ,φ), a flux density, So, 
for Sobserved, is measured. 
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! 

S
o

= B(",#)P
n
(",#)d$

source

%%  

Pn(θ,φ) is simply a weighting function. In other words, if the source is much larger than the 
beam pattern, then the brightness along boresight  (where Pn(0,0) = 1) will contribute most to 
the observed flux density and the brightness further away from boresight will contribute less. 
The brightness far away from boresight will not be “seen” by the antenna and therefore will 
contribute almost nothing, apart from radiation that gets into the antenna through the side 
lobes. In general: 
S0 = S  for a point source if the antenna is pointed toward source . 
S0 < S  for extended source. 
 
If B of a source is constant over the main lobe, then 
S0 = B(θ,φ) ΩM  where ΩM  is the main lobe solid angle 
 
So far we have assumed that the source is directed along boresight or close to it and not 
changing the direction in which it is pointing. We want to now look at a more general case 
where we change the antenna’s pointing by scanning across a patch of the sky. In this case 
we have to consider convolution. For simplicity, let us first consider an antenna with a “fan 
beam” sweeping across a source in the φ-direction. 
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               y 
 
                     

x                 φ0         
 
 
 Pn(θ,φ) 
 y 
    B(θ,φ) 
 
 φ 
 
 
 φ0 
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Let’s just think of the 1-dim case where B(θ,φ) = B(φ) and Pn(θ,φ) = Pn(φ). Then the 
observed flux density, S0 (φ0), 
                                                                                                                                 Pn(φ) 
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We conclude that the observed flux density is the result of a convolution of the brightness 
distribution with the mirror image of the beam pattern. 
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If the beam pattern is symmetric, then  
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Graphical example (with guestimated convolution function) 
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Antenna beam angle for 1-dim case: 
 
If we integrate the antenna beam pattern, Pn(φ) from -∞ to +∞, we get φA, the antenna beam 
angle. Note, that Pn(φ) is normalized and dimensionless. If Pn(φ) were a rectangular pattern 
with unity height, 
 
 1 
                                          Pn(φ) 
 
 
 
 
                 -φA/2     0     φA/2             φ 
then 
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if Pn(φ) is a Gaussian for example 
 
 1 
                                          Pn(φ) 
 
 
 
  
                 -φA/2     0     φA/2             φ 
 
then φA gives the effective width. Note, that the same is true for 
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Now assume a very thin beam which in the limit can be represented by a delta function 
multiplied by a dimensionless constant, K1. The constant is needed, since the integral of the 
delta function is equal to unity, but the integral of the beam pattern is not necessarily equal to 
unity. Then, with the delta function being symmetrical, 
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Scanning with a rectangular beam 
 
Assuming that we have the same brightness distribution, B(φ), as before what is the observed 
flux density distribution S0 if we scan the source with a rectangular beam of width φA ?  
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Scanning with an infinitesimally sharp beam 
 
Assume that we have an antenna with an infinitesimally sharp beam and want to scan a 
celestial source with a brightness distribution, B(φ). Then the measured or observed flux 
density at any sky position or pointing of the antenna, φ0, is 

 

            
 
S0(φ0) in W m-2 Hz-1 

B (φ0) in W m-2 Hz-1 rad-1 

φA          in rad 
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Thus, the observed flux density distribution, S0(φ0), is identical in form to the actual 
brightness distribution, B(φ). 
 
 
Scanning a point source 
 
Now let us assume another extreme case namely where the source is infinitesimally compact 
in its angular size. This could be a celestial object as big as the center of a whole galaxy, for 
instance a quasar, but sufficiently far away from us that it has only a very small angular 
diameter which appears point-like. Another example is a spacecraft sending down to us a 
modulated carrier signal. We call these kind of sources a point source. For the antenna beam 
we want to assume it to be of finite width. 
 
Then with K2 as another constant we can write: 
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And finally: 
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                                            remember: 
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Thus, the observed flux density distribution, S0(φ0), is identical to the mirror image of the 
antenna beam pattern, 

! 

˜ P 
n
(") . When the antenna boresight is aligned with the source (φ0 = 0), 

the observed flux density, S0(φ0), equals the true flux density of the source, S.  
 
 
Scanning in 2-dimensions 
 
In general the brightness distribution is 2-dimensional at the sky and the beam pattern of the 
antenna is also 2-dimensional. 
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In this case, we have to scan the source in two dimensions. We start for instance somewhere 
In the lower left corner at, say, θlow , φleft and sweep the antenna by increments of  φ0  in the φ 

- direction up to θlow ,  φright Then we move the pointing of the antenna to θlow +1, φleft  and 
sweep the antenna to θlow +1, φright. Then we move the pointing of the antenna up again and 
repeat the procedure till we have reached the point θhigh ,  φright in the upper right corner. 
                                                            
 
 θhigh ,  φright 
 
 
 
 
 
θlow , φleft 
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The observed flux density is then: 
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The graphical convolution is done as in the 1-dimensional case but repeated several times by 
shifting in the θ-direction. The result is a 2-dimensional convolution function. 
 
 
A source a bit smaller than the main-beam area 
 
If the source is smaller than the main-beam area as sketched below with the antenna being 
aligned with the source,  
 
 
 
 Antenna main-beam area, ΩA 
 
                                                                   Source solid angle, Ωs 
 
 
 
 
 
 
 
Then the observed or apparent brightness, B0, is 
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If  Ωs  << ΩA, then the average brightness, 

! 

B , of the source is: 
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%% d"                                 Example 1-dim case: 
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If the brightness is uniform over the source and if  Ωs  << ΩA,  
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 Antenna main-beam area, ΩA 
 
                                                                   Source solid angle, Ωs 
 
 
 
 
Then 
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where Bo is the observed brightness and B the true brightness. 
 
Beam efficiencies 
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If the brightness is uniform over the source and if  Ωs  > ΩA,  
 
 
 
 
 
                                                                       Antenna main-beam area, ΩA 
 
                                                                               Source solid angle, Ωs 
 
 
 
 
 
 
 
Then 
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Example: 
A discrete round radio source of size 2 deg in diameter has a true average brightness of 

! 

B  = 
10-20 W m-2 Hz-1 rad-2 at frequency ν. 
 

1) Calculate the true flux density of the source 

! 
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2)Calculate the observed flux density if the main beam of the antenna has a solid angle of 
1 deg2 and if 
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B = B . 
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The total observed power, W, received by an antenna with  an effective aperture, Aeff, 
sensitive to one sense of polarization only (factor ½), over a bandwidth Δν from a source of 
extent Ωs is: 
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W =
1
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W =
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If  Aeff = 150m2 and the bandwidth Δν= 10 MHz, then in case of Example 2) we get 
W=1/2 •150•1•107•3•10-24• = 2.25 •10-15 W.  
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2.3 Antenna temperature and noise 
 
The brightness, B,  of the radiation from a blackbody is given by Planck’s radiation law: 

! 

B =
2h"

c
2

1

e
h" / kT

#1
 

 
B: brightness in W m-2  Hz-1  rad-2 

h: Planck’s constant   6.63 •10 -34 Js 
k: Boltzmann’s constant 1.38 •10 -23 JK-1 
T: temperature of blackbody in K 
 
 

 
 
from http://www.heliosat3.de/e-learning/remote-sensing/Lec4.pdf 
 
The total brightness is: 

! 

B
tot

= Bd"
#$

+$

%           [W m-2 rad-2] 

       

! 

="T 4                 (Stefan-Boltzmann law)        σ = 1.80 •10 -8 W m-2 K-4  
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Note: Btot is often given as the integral value over one hemisphere. Then we have 

! 
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         σ* = π σ = 5.67 •10 -8 W m-2 K-4  

For radio frequencies we are mostly in the Rayleigh-Jeans regime and hν << kT. 
Then  
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                           Rayleigh-Jeans law 

 
Example:  T = 250K 
                  ν = 1 GHz  
 
Then:  hν = 6.63  10-25 J 
           kT = 3.45  10-21 J                           hν  << kT 
 
 
Radiation laws applied to a discrete source 
 
If a blackbody of temperature T subtends a solid angle, Ωs, then the flux density of the 
source, S, is  
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and for hν  << kT 
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If T is not constant over the source, then we need to integrate of the the temperature 
distribution of the source: 
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2k" 2
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It was shown in 1962 that S gives not only the flux density of a source at temperature T or 
with a temperature distribution T(θ, φ), but also when T, or T(θ, φ), is the observed antenna 
temperature. When the antenna is lossless. 
 
Relation between spectral power, w, brightness, B, and antenna temperature, TA. 
 
Consider the following scenario: 
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                                                    Blackbody 
      R  Antenna 
 Pn (θ, φ) 
 
      T T 
 
 
 
 
 
 Sky at temperature TA 
 
 
a)                                   b)                                   c) 
 
 
It can be shown that the same spectral noise power is available at the terminals in all three 
cases. 
 
Case a)   
w = kT 
 
Case b)  
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And if we assume that B is constant, that is: 
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we get: 

! 

Aeff"A =#
$ 2

4
2
1.4

2%2 & %2  

and finally: 

! 

w = kT  
 
In other words, the spectral power received by the antenna in the box is the same as that for 
the resistor. 
 
Case c)   
 
This case is very similar to case b). The temperature the antenna “sees” through its antenna 
beam pattern is the temperature of the emitting body. This temperature is called the antenna 
temperature, TA 
 
We can now write:  
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The observed flux density of a discrete source is then: 
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If we express the brightness, B(θ, φ), through T(θ, φ), by using the Rayleight-jeans law, with 
T(θ, φ) = Ts  (θ, φ) (source temperature), then 
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If the source is very small compared to the width of the main beam lobe, and if we are 
pointing our antenna right at the source, then Pn (θ, φ) is essentially equal to 1 and we get: 
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! 

=
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A

T                                       Ω S <<  ΩA    ,  T : mean temperature 

 
TS in these equations is equal to the thermal temperature of the source if the radiation is due 
to thermal emission. If the radiation is generated by non-thermal mechanisms, such as 
synchrotron radiation or emission from a spacecraft when sending a carrier wave to the earth 
station, then TS may be much greater than the thermal temperature of the source. In this case, 
TS is the temperature a bl;ackbody radiator would need to have to give radiation equal to that 
observed at wavelength λ. TS is also called the equivalent blackbody temperature. 
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Example: 
An antenna is pointed at Mars.  
θS = 18” 
ΩA = 0.018 deg2 
TA = 0.24 K 
 
Then; 
ΩS =   π θs/4 = 0.00002 deg2 
TS = TA  ΩA/ΩS  
     = 0.24   0.018 / 0.00002 
     = 216 K 
On the other hand, one could also determine the size of a source like a planet or any other 
celestial body that radiates like a blackbody if there is a means to determine the temperature 
of the body. A few years ago that was done for one of the newly found large Kuiper belt 
objects. The Kuiper belt is located beyond the orbit of Neptun and contains millions of 
celestial objects, mostly comets 10s of km in size but also some larger moon-like objects a 
couple of 1000 km in size. When a particular object was found recently, the temperature was 
estimated from the distance to the Sun. Then the antenna temperature was measured with a 
radio antenna and then the size was obtained. It came out to be larger than Pluto. Should that 
object be called the 10th planet? Other objects just a bit smaller than Pluto were already 
known. The decision of the International Astronomical Union was to bump Pluto from its 
pedestal and consider it to be “just” another member of the Kuiper belt. How would you have 
voted? 
 
2.4 Minimum detectable temperature and flux density 
 
The minimum TA a radio antenna can detect is limited by fluctuations in the receiver output 
caused by the statistical nature of noise, The noise is given by Tsys where 
 

! 

Tsys = TA + TR                 TR : receiver noise contributions       TR = Te1 + Te2 / G1 + Te3 / G1G2 

 
The fluctuations due to Tsys can be reduced by using a large bandwidth Δν, and/or by 
increasing the integration time, Δt. 
 

! 

"T
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=
KsTsys
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             Ks :      sensitivity constant,    

                                      ΔTmin : minimum detectable temperature which is equal to the rms 
                                                  system noise temperature fluctuations. 
 
With the Rayleigh-Jeans relation we obtain the minimum detectable brightness: 
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and the minimum detectable flux density: 
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! 

"S
min

=
2k

Aeff

KsTsys

"t"#
 

Example: 
If  Δν Δt = 1, then  scanning across blank sky may give at the detector output terminals a 
power reading in terms of temperature that may look like this: 
 
 
 
 
 
T 
 
 
 ΔTrms 
Tsys 
 
 
 
 
 
 
 
 
 time 
 
 
Now, if we increase the product Δν Δt, then the fluctuations, ΔTrms , will decrease with the 
square root of the product. So, if for instance Δν Δt =16, then the fluctuations will decrease 
by a factor 4 and the power output may look like this: 
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Tsys ΔTrms 

 
 
 
 
 
 
 
 
 time 
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Now suppose that we are sweeping with our antenna across a celestial source like a planet. 
That means that the antenna temperature TA which was nearly 0K (3K to be exact) will 
increase, and so will the temperature power reading. It may look like this: 
 
 
 
  T  
 
 TA 
 
 
 
 
 
 
 
                                                     Antenna points toward source 
 
 time 
 
The source is just barely visible as an increase of the temperature reading. The minimum 
temperature increase that can be seen is ΔTrms. So this source causes an antenna temperature 
that is just a bit higher than the minimum detectable temperature increase. 
 
Example: 
 
Tsys = 125 K 
λ     = 1415 MHz 
Δν   = 5 MHz 
Δt    = 10s 
Aeff = 700 m2 

Ks     = π / √2 
 
Then: ΔTmin = 0.03K 
           
          ΔSmin = 1.2 • 10 -27 W m-2 Hz-1   = 0.12 Jy 
 
 
Questions: How would you choose your parameters if you wanted to detect small 
fluctuations in the microwave background radiation of, say, 0.00001K? 


