
3 Radio Observatory and DSN Instrumentation Fundamentals
3. 1 Antennas, Antenna Arrays and VLBI

We now want to look at antennas and antenna arrays from a more fundamental point of view.
An antenna is a device that effects the transition of an EM wave from one in free space to a
guided one in a conductor like a wave guide or a horn. This is called a receiving antenna. It
can also effect the transition from a guided EM wave to a free-space wave, In this case it is
called a transmitting antenna. The response of an antenna as a function of direction is the
antenna beam pattern. The pattern may be expressed in terms of the field intensity (field
pattern) or in terms of the pointing vector or radiation intensity (power pattern). The function.
Po(O. 0), that we have used so far is the normalized power pattern. We now want to see how
the power pattern is related to the antenna and its electrical potential or aperture distribution.

We distinguish between:

l) near-field pattern --- dependent on angle and distance
2) far-field pattern -- dependent on angle only

In the latter case, the curvature of the wavefront is much less than l. across the geometric
dimension of the antenna aperture.

R for far field:
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Now let us consider a flat rectangular surface as an antenna which has a particular aperture
distribution, g(x,y) and dimensions L*, Lr.
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The aperture distribution can be uniform if the surface is illuminated uniformly. It can also
have a non-uniform distribution, for instance where the borders are less illuminated.

Now we want to see how the field pattern is related to the aperture and the aperture
distribution.

x
The unit vector of ilhas the components (1, m, n).
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We can illustrate this scenario also in the one-dimensional case where rve can then
more clearly.

A cross-section along x may look like this:
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All we want is the far-field pattern in the direction n. rt can be shown that the far-fierdpattern, f(l,m), is the F,ftf the apertur" Oi.,ribrrion.
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The zero-crossings occur where ,*, * L L\
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f(1, m)
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The field pattern f(1, m) determines the angular dependence of the E and H fields. The beam
pattern is simply the normalized power pattern.

The normalized power pattern, e, 1fi ir given by

P,(i)=w
lf *^.1

P,(1, m): sin.'17& ) sin c2 ( m L\
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Remember that l, m are functions of 0, Q.
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E xamples of rectangu lar apertures :

Array of dipoles

Horn antenna
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If we plot the beam pattern, P"(l,m), in two dimensions, it looks like this:

P.(l"m)

tr'trll,I\

m

Here are some important acronyms:

FWHM: Full-width at half maximum
HWHM: Half-width at half maximum
[{PBW: Half power beam width

FWHM, - 0.88 VI-* rad

FWHM! - 0.88 VLu rad

First sidelobes axe at *1.pL,and have 4.7Ya of the power along boresight. That is an

attenuation of only 13.3 dB! * pretty high sidelobes!

What can be done to lower the sidelobes? lTapering

Tapering is a rvay to use non-uniform illumination of the antenna aperture and de-emphasize
illumination of the borders of the apertllre.
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Tauering:

We pan modify the aperture distribution and see how the power pattern (beam pattern)
changes. From an engineering point of view, modiffing the aperture distribution is
accomplished by modifiing the illumination of the aperture of the antenna through the feed
in the focal area. This is called "tapering" if the illumination is lower at the boarders of the
antenna aperture. We will now use a particular modification of the uniform aperture
distribution to illustrate tapering and its effect on the filed pattern and beam pattern. We will
use the knowledge we gained so far in mathematically deriving the field pafferns for
particularly tapered aperture distributions. For simplicity, we will just look at the 1-dim case.

Example: Triangularly shaped g(x^)
For simplicity, we want to indicate only the shape of the functions and ignore constants like
L,l)" and 2x. On the left side w'e plot the aperture distribution, g(xr) and on the right side we
plot the filed pattern, f(l).
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The triangular function is the convolution of the gate function. But it is f*lelb, broad as the
gate function. lf we narow the width of the triangular function by a factor 2, then the sinc2-
function broadens by a factor 2. But the sidelobes are also much lower. When we then
calculate the beam pattern Pn (l), we see that tapering had the effbct of lowering the
sidelobes and broadening the beam.

What happens if we inverse the taper?

Example; g(x) with g(xJ* g(xJ - II(x)
sinc'''1{L:fz-
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In this case, FT{g} is the square root of the sinc-function. The main lobes would get
narrower and the sidelobes higher.

In the extreme case, g(xr) could develop into 8-flmctions.

g(xi) cos( [ )
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The field patter, (l) would then just be a cosine function. The beam pattern would be a cos2 -
function and would have sidelobes as large as the main lobe.

Spatial fiequency and spatial frequenc), spectrum

We have now elaborated quite extensively on:

g(xr., yr) : Aperture distribution or apeffure illumination or current grading

f(l,m) : Field pattern (it is proportional to the electrical field, E(l.m) in far-field

P,,(l"m) : Antenna power pattern or beam pattern or angular power spectrum

We now introduce a new function:

Pn(x^, y^) : FT{P,( {, tr1f), Spatial frequency spectrum or spatial frequency response

In symbolic representation we have now:
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To visualize these functions, we plot them for a specific 1-dim case:
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The analogy to siglals as a function of time is apparent. However, there is a slight break with
the analogy. lF(o)l' is called energy density spectrum, but P,(l) is called antenna power
pattem or antenna beam pattern.

The analogy goes further. For a uniform aperture distribution, we get a triangularly-shaped
spatial frequency spectrum or spatial frequency response from x^:0 to L*/1" . We say that the
antenna has low-pass spatial frequency filter characteristics. Its sensitivity is maximum for
spatial frequencies : 0 and decreases linearly with increasing spatial frequency up to a
maximum spatial frequency of L"/h . Larger spatial frequencies are not passed through the
antenna. In fact, the antenna is a linear spatial filter. We can sketch the analogy in the
following way;

Linear low-pass filter
v(t)

h(t)

L* L,

s"(0)
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P,(e)B(0)
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Tha angular resolution of a radio antenna can be increased by increasing the size of the
antenna or decreasing the wavelength or both; in other words, by increasing the ratio, L,/h
and L,/fu.

Interferometers

Another possibility to improve the resolution is to use two antennas spaced a distance apart.
Below we have' sketched apait of antennas, each of diameter L and spaced a distance, s,

apart.

If the antennas have uniform aperture distributions, the spatial frequency response, P,(xJ,
can be readily computed. We just want to look at the 1-dim case along the x-axis.
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Now we want to compute the field pattern f(l) and the beam pattern or angular power pattern,
P"(l). Rather than computing the FT directly with a lot of sweat, we represent g(x^) as the
convolution of the gate function, fI( x^/ L^), and a pair of spaced delta functions,
S( xr+ sJ2) + 0( x1' s^/2) . The field pattern is then the product of the-lfi'f the individual
runcdons. dn}ffip1
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All four functions can be sketched as follows:

g(x;.)

S

SI

P"(l)

S
1/ s^

The lobes in P,(l) are refered to as fringes. The rvidth between first nulls is called fringe
spacing. The liinge spacing is I / s,. , which is % 1l L,. compared with a filled array with
Si" : Li The spatial frequency response of this interfbrometer is equivalent to a combination
of a low-pass and a high-pass filter.

What is the output of such interferometer when sources of different brightness distributions
are observed?

For a point source we get:
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For a source that is a bit more extended but with a diameter, cr, still smaller than, or equal to,
the lobe spacing, 1/ s^, with a. < ll sr, we get;

B0) P,(l) s"(1)

*

B (*^) P,(xr) S"(x^)

a

Clearly, the high frequency component of S"(x^) is distorted and smaller. This is equivalent
to a smoothing of S"(x"). The degree of smoothing of the fringes depends on the extent of
the source. If we increase the source size to a - ll s^ , then fringes get smaller and if the
source is really large, then fringes can hardly be seen anymore till they completely vanish
with further increasing source size.

The geometry of an elementary interferometer can be sketched as follows.

Here, D, is the baseline, Dsin0 = car, where c is the speed of light and t* is the geometric
delay. The outputs of the two antennas are amplified, multiplied, and integrated over time, in
principle. This is done mainly in the correlator. But we will get to it later.

The co_ordinate system for the baseline vector is chosen such that D is expressed in units of ),,
:D
D^ : - (in our previous l -dim case, this conesponds to s^) and Dr: (u, v, w)." L'
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v)
celestial sphere

v

plane

s

so

Dh

V

u-v plane
u

N

3n : Vector of source center (phase center which structure phase is refbrred to)
s : Vector to slightly different direction in brightness distribution of source.
ti : Differencevector. s-30
ru : Component of D^ in plane perpendicular to 30. It points to local east.

v : Component of Dr. in plane perpendicular to Jo. It points to local north.
x-y plane: 'l'angent plane on the celestial sphere with the tangent point being the origin at 3.,,

the phase center

E

72



The angular distance from any point in the map from the origin ofthe coordinate system is
proportional to the sine of the corresponding angle on the sky. If the angle is small, as it is
usually in interferometry, then the sine of the angle is equal to the angle (in tad). Assuming a
small extension of the brightness distribution, one can show that:

D^.io: ux + vj-

dii: dxdy

The projection of the baseline vector on the u-v plane changes as the earth rotates. As a
result, the projection of D, traces ellipses on the u-v plane.

For an array of antennas, say N antennas, we get N(N-l) independent ellipses. A uniform
distribution of ellipse would be ideal and would be equivalent to a uniform aperture
distribution over a very large area. In reality, the aperture distribution is fm from uniform and
results in complicated sidelobes of the interferometer array's power pattern or beam pattern.
Tapering could diminish the sidelobes to some degree, but the FWHM of the beam pattern
would broaden at the expense of resolution power. The challenge in the analysis of data from
affiays is to cope with the complicated aperture distribution.
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Norv we want to go a step f'urther and see how the signal is received by an interferometer of
two antennas and then correlated.

DsinO

V1 ,-"*)

amplifiers and filters

tr : lobe rotator

correlator

integrator: avorager

c, 
". 

(o)

The correlator output for a point source as a function of the filter bandpass characteristics

Let us assume that we are observing a point source and that the signal fiom that source is a
plane wave with:
V,(r) = Eei'"'

vr(t): Eei.)(t-rtl

The two amplifier-filter combinations, Hr and I72, arc assumed to have identical bandpass
characteristics, that is identical transfer functions with Hr : H2 : H. The integration time is
on the order of I s, which is 1 07 times larger than Ll Lv, if the bandwidth of the filters, Av, is
10 MHz. For all practical purposes that means that the integration goes from - infinity to
+inflnity.

If we assume that the transfer functions are rectangular in magnitude, that is, the filters have
ideal filter characteristics, i.e. a rectangular bandpass, then

1,,,\
H(utl: nl - lx l61u.r + uro) + 6(ur - roo)l

\ Ar'tl
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Let us first do the integration over time:

The output of the correlator is:

1 +7--2 ' x

c,. (t) : lry+ {,{" 
E2 H(at1ei"" e-kDtt-r\+r)d(Mr

= a' f aG,tlri'''("-') da

II (orlAur)

-Lal2 +L{CIl2

*

H(c,t)

*too

+[D0

CO

0)

CD-(r)0

eu, u; ( r) : tt.-.+.'i',.j_ E 
2 H 7r1 e"" 
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d otctt

Andfort:0:

Cur,,, (0) : d' I agolei"'', cltD

For the case with infinitely narrow-bandpass filters we get

C,1,,. (0) = r' I la!,:+ roo) + 6(at - a4)1e""', d*

= Z E2 cos(rrroz* )
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C,',,'. (rr,r : 0)

The output of the corelator varies periodically with zr. If we now consider filters with a
finite bandwidth, Lot, then the ou@ut of the comelator is multiplied,by asinc finction. Here
is why:

Tg

Qiu. (0) = e' I AgttSei." r]o) is just the inverse FT of H(o) times 2x andtimes E2. [n other

words,

c,,. r 0 ) : zm,lrr 
{"(*) 

* 6(a; +.,., . .,(#) . ur., -,.,}]

:zn2nEz F-.'"(#)t FTt\6(to+ rr;,,) + 6(ro - aru)]

. Arostn-r
2q

A(,
A,O 2

2n -cos0)^T2r u(-2n2nE2

2s
=LEzLra

C',,.(T s,T 
:0)

Lat

2nt'
T*
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Envelope zero crossings at
Lol 

, :+1"+)...
2t

If the transfer functions of the filters are not rectangular, then Cu,r, (0) assumes, instead of the

sinc-function a different term. For instance, if the hansfer function is a Gaussian, then the
sinc term is replaced by a Gaussian.

The envelope is often called "dglaJr pattgn or bandwidth pattern or fringe washing function.

Usually, the delay is tracked with the lobe rotator so that r = r, - r, is very small, that is

close to 0. That is why we were interested 'tn er,r,(r = 0). Howevat2 Tp has to be computed

and applied before correlation. It is computed for a nominal position of the source at the sky
that is believed to be the correct position of the source. This position is referred to as 30. The
lobe rotator continuously applies updated values of r, as the Earth rotates and the baseline
vector components, u and v, change.

The correlator output for an extended source

We now rvant to consider the corelator output as a function of the brightness distribution,
B(i:), of the source at the sky. In particular, we want to look at the part n(D) wittt

+-

C,,{0}:JHtolR(Dldo

In other *-Jdr, we want to ignore the integration over the filter bandwidth.

The electrical filed squared, E2 , is proportional to B for a point source. For an extended
source we have to ooadd" all point sources, that means we have to integrate over the extend of
the source.

fi(r) = $ nqiy''"'as

S ince 
\,urcc

t_
7 :lPo.1:tc
and

2n 4nT:*-+-"'r' L.at' L.ra

.S:.T^+4,

we can write

ntoi = $ at;,+o1a',D''' 
*'''d1ro 

*.;1
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We now use a particular coordinate system for B that is centered at 3o. Also, in
interferometry, the sources are not much extended around 30, so that d is always rather
small. With now B = 8(6) we get

R(r): u'li'i" $ aop';,"' ,t(o)

Here
l-D.\1,

e' is an oscillating function for a nominal direction, 30, and
i9ri.,t

JJ B\6v ' d(a) is called the visibility function. This is a more direct introduction to the

visibility function than what we shoed before.

R(D) now consists of an oscillating term for a nominal direction 3o which varies with the
changing projected baseline as the earth rotates. When we integrate this term over the
bandwidth of the filter, we get the oscillating term (sinc times cos) we considered before.

The second term describes the structure or brightness distribution of the source. Again, it is
the visibility function with

v (D) :,!{,:rurizrb;'o,1161

With coordinates, x and y, for d at the sky and

9 b. o =2-9 b. ,;
c),

:ZnD^. o
=Zn(ur + vy)

we can now write

V (u,v) =

B(x,fi = $ v (r,rY-''"(u, +04u4,

Note: Compare 2nux and 2xvy with 2nvt:ort, and we can understand why u, v are called
spatial frequency components.

f[ u t*, rPizn 
(ux +w) dxdy

soutce

source
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Example

lvl

B(0,0)
LV

*x -x

lvl

B(xe,0) a
,? LY:Zntrxa

,

Dl:10,000 km
)": I cm
umax : l0e)", assuming that lDl/}" : u,,.,r,

xo : 10 pas : 4.848 l0-ri rad
t
LY:2nu*u* xp1 : 2x 4.848 10' 36012x deg : l7 deg

We can measure such phase in the visibility function and then determine x0 accurately. How
accurately? x0 : 10 F,as corresponds to 36 m atthe distance of Jupiter! Hyper accurate
spacecraft navigation possible!

However, this measurement ofphdse 6t un,* = is only reliable if it can be determined
unambiguously. With only a 2-element interferometer and only a short measurement for say,
10 min, where the projected baseline does not change very mucfu the measurement of phase
is ambiguous by n2n. In fact the measurement of phase could also be 17 fie\ deg or 17 -360
deg. These ambiguities correspond to different fringes of the response of the interferometer.
Only the width of the envelope of the oscillating function, the sinc-function, limits the range
for the number of ambiguities. That is why we need an afiay of telescopes that gives us many
baselines and many points in the u-v plane. With many points, the phase can be
unambiguously determined. And that means that the position offset x6, can also
unambiguously determined.

v

u

/ ?Xo

u
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3.2 Time and Frequency Standards

A prerequisite of interferometers is that clocks at the antenna sites are extremely well
synchronized. For this purpose, hydrogen masers are used. Hydrogen masers are the most
stable clocks over short time intervals, namely over a few days or so. A maser is based on the

principle of stimulated emission. See the description on the sheets handed out in class

3.3 Multibeam Antenna Systems

From satellite antenna technology we know that multi beams can be produced by using a
cluster of off-axis feeds.

--|

Each feed-reflector combination has its own beam pattern with a main lobe and with side
lobes. This technology is used to produce several spot beams covering particular areas on the
globe.

Horn clusters are also used in radio astronomy. An example of a horn cluster is given below.
Shown are three round horns each producing beams with FWHM, 0. This arrangement
produces a wider field of view (FoV) than what is obtained with just one feed. In effect, a
cluster of feed horns provides a multi-pixel imaging capabilifi similar to a CCD in optical
imaging. However, the number of pixels in our sketched case is just 3 and can be ds large as

10 or so, a far cry from several million pixels obtained with CCDs.
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However, there are disadvantages to horn clusters:

1. The beam efficiency, the ratio of the sampled area to the total area is rather small. [t
decreases with increasing fiequency, v, since e is proportional to l/v.

2. Trn, increases.
3. For an altitude-azirnuth antenna mount, the orientation of the celestial source rotates

due to the apparent diurnal motion of the sky. An equtorial mount, where one axis of
the antenna points along the spin axis of the Earth would be better. However, these
mounts are not often used anymore.

4. Horn clusters have a limited bandwidth.
5. Horn clusters cannot optimally illuminate the reflector aperture. For instance, the

effects of scattering by feed legs or blockage by the prime focus receiver cannot be
mitigated.

Because of the need to achieve a large FoV combined with multi-pixel imaging and because
of the disadvantages of using horn feed clusters, electrical engineers are now working on
focal plane array architectures.

There is a whole family of architectures under consideration. They have in common that they
are printed circuits, kind of a 2-dim version of the 3-dim horn.

Examples of different architectures are

The example on the right is quite promising.It is called : Vivaldi. A number of Vivaldi
antennas is put together to form an afiay . Vivaldi affays have the following positive
characteristics:

Printed circuit fabrication
Can be packed as ciosely as 0.11"

Wide bandwidth of highest to lowest frequency of 5:l
Dual po lari zation capabi 1 ity
LNA can be printed on the board
Almost any desirable beam can be formed with digital beam formers, for instance, to
block out subref'lector legs of RF interference from satellites.

1

2

J

4
5

6

8l



There is a whole "industry" out there to solve the EM properties of such antenna arrays. To
compute the far-field characteristics affords massive computing power. Depending on the
number of array elements there are of the order of several 1 00,000 &ee parameters to solve
for. .

The Vivaldi array is a big hope for interferometer arrays. Since the FWHM of interferometer
arrays is very small, Vivaldi focal plane arrays may provide multiple beams and therefore a
large FoV.

3.4 Receivers

Receivers for the radio range up to frequencies of 600 GHz are in general Superheterodlme
systems. The heart of such a system consists of a tunable oscillator, a tunable filter and a
mixer. This setup allows arunge of incoming signals to be down-convefied to a fixed IF.

The block diagram ofa superheterodyne receiver is given on the hand-out. The first such
receivers were built for AM and the figure has as an example an AM signal. Superheterodyne
receivers are used in all DSN (Deep Space Network) stations. The bands used there are S, X,
Ka^

4 Radiometric Tracking Techniques for DSN
4.1 Deep space radio measurements for Earth-based radio
navigation

4.2 Eafih-based tracking and navigation overview

4.3 Range and Doppler tracking observables

4.4 YLBI tracking observables

4.5 Future directions in radiometric tracking
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