AP/ECON 2300 3.0 FF F2010-11
 Assignment 1

due: Tues. October 19, 4 pm

Do all 5 questions. All count equally.

1. Draw the budget set for the following person.

The person consumes food and text messages. Food costs $\$ 1$ per kilo. To send any text messages at all, the person must pay a monthly access fee of $\$ 30$. If she pays the access fee, she can send up to 100 text messages at no extra cost ; she must pay 10 cents per message for any text messages she sends in excess of 100 per month.

She has $\$ 180$ per month to spend on food and text messages together.
2. Are the following preferences well-behaved (that is are they monotonic and convex)?

The person draws a graph, with the quantity F of food (in kilos) on the horizontal axis, and the quantity C of clothes on the vertical axis. Asked to compare two bundles (F, C) and (f, c), she measures their distance from the origin of her graph with a ruler. She will prefer the first bundle if and only if the point (F, C) is farther from the origin (the point $(0,0))$ than the point (f, c), in the graph which she has drawn.

Explain briefly.
3. What do the indifference curves look like for a person whose preferences can be represented by the utility function below?

$$
u(x, y)=100-\frac{1}{x}+y
$$

where x is the quantity of good 1 and y is the quantity of good 2 .
Are the preferences well-behaved?

continued

4. If a person's preferences could be represented by the utility function

$$
u(F, C)=F+C-\frac{1}{C+1}
$$

where F and C are the quantities consumed of food and clothing, are the preferences well-behaved?
What is the person's marginal rate of substitution between the two goods if she has these preferences?
5. What would a person's demand function be for clothing, if her preferences could be represented by the utility function defined in question \#4 above?
(You also can assume that the price of clothing P_{C} is low enough, and the person's income Y is high enough, that

$$
P_{C}>P_{F}>\frac{P_{C}}{2}
$$

and

$$
Y>P_{C}\left[\sqrt{\frac{P_{F}}{P_{C}-P_{F}}}-1\right]
$$

where P_{F} is the price of food.)

