YORK UNIVERSITY

Faculty of LAPS
Final Examination
December 7, 2017
AP/Economics 2300 3.0 FC : Intermediate Microeconomic Theory I
S. Bucovetsky
time $=2$ hours

This exam consists of two sections. Part A counts for 40 percent of the grade, part B for 60.

Part A: Define any $\mathbf{8}$ of the following 10 terms. ($40 \%: 5 \%$ per question)

1. convex preferences
2. inferior good
3. Laspeyres (base-weighted) quantity index
4. present value
5. (von Neumann - Morgenstern) expected utility function
6. compensating variation to a price increase
7. marginal revenue
8. increasing returns to scale
9. isoquant
10. long-run marginal cost function

Part B: Do any 5 of the following 10 questions. ($60 \%: 12 \%$ per question)

1. Are the preferences represented by the utility function

$$
U(F, C)=F+C^{2}
$$

monotonic? Are they convex? (Here F is the person's food consumption and C is her clothing consumption.)

Explain briefly.
2. Is it possible that, in comparing a person's consumption bundles in 2000 (the base year), and 2017 (the current year), the Laspeyres quantity index is less than 1 and the Paasche quantity index is greater than 1 ?

Explain briefly.
3. What are the income and substitution effects of an increase in the price of food, if a person's preferences could be represented by the utility function

$$
U(F, C)=2 \sqrt{F}+C
$$

where F is her consumption of food and C is her consumption of clothing?
4. Explain why a person with well-behaved preferences might have a desired level of saving which decreases with the rate of return that she earns on her saving.

continued

5. Suppose that a person is a risk-averse expected utility maximizer, and that she can buy as much or as little fire insurance as she wants for her house, but at a price which is actuarially unfair. That is, the price of buying $\$ 1000$ worth of insurance is greater than 1000π, where π is the probability of a fire.

Discuss how much insurance this person would choose to buy.
6. What is the own-price-elasticity of aggregate demand in a market which consists of 5000 identical consumers, each of whom has an individual demand function with the equation

$$
Q=\frac{100}{p^{2}}
$$

where p is the price of the good, and Q the quantity demanded?
7. What is a person's best bidding strategy in a second-price sealed-bid auction, if she values the object (which is being auctioned off) at $\$ 100$, and if there are 10 other bidders.
(In a second-price sealed-bid auction, each of the 11 bidders submits a secret bid on the object. The person who submits the highest bid wins the object, but the price she will have to pay is the second-highest of the 11 bids which were submitted.)
8. Why can't there be a perfectly competitive market for a good for which the technology exhibits increasing returns to scale?

continued

9. What is the (long-run total) cost function $C\left(w_{1}, w_{2}, y\right)$ for a good for which the production function is

$$
f\left(x_{1}, x_{2}\right)=\min \left(x_{1}, 2 x_{2}\right)
$$

(where x_{i} is the quantity employed of input i, w_{i} is the unit cost of input i, and y is the quantity of the firm's output)?
10. What is the equation of the short-run supply curve for a firm which has a shortrun total-cost function with the equation

$$
S R T C=q^{3}-12 q^{2}+48 q
$$

where q is the quantity of output produced by the firm?

the end

