time : 1 hour

Do all 4 questions. All count equally.
$Q 1$. "Monopoly is inefficient because the monopoly's owner makes high profits, and the monopoly's customers pay high prices". Discuss.

A1. The key points : (i) Single-price monopoly is inefficient (but not necessarily pricediscriminating monopoly) ; (ii) the inefficiency is not due to the monopoly's owner's high profits.

The efficient quantity of output for an industry is the level of output y^{*} for which $P\left(y^{*}\right)=$ $M C\left(y^{*}\right)$, where $P(\cdot)$ is the inverse demand curve for the monopoly's product, and $M C(\cdot)$ the marginal cost curve. That is the output level which maximizes the sum of aggregate consumers' surplus, and aggregate profits of firms producing the good.

Decreasing total sales to some y below y^{*} is inefficient, because the units of output between y and y^{*} are valued by consumers more than the cost of producing the units.

In particular, a single-price monopoly chooses a level of output $y^{M}<y^{*}$, at which $M R\left(y^{M}\right)=$ $M C\left(y^{M}\right)$, where $M R(\cdot)$ is the marginal revenue curve corresponding to the inverse demand curve $P(\cdot)$. It must be true that $M R(y)<P(y)$ (for any output level y), since

$$
M R(y)=P(y)+P^{\prime}(y) y
$$

and $P^{\prime}(y)<0$ if the inverse demand curve slopes down.
The added profit a single-price monopoly gains in lowering output from $P^{*} \equiv M C\left(y^{*}\right)$ to y^{M} is the extra revenue from the higher price $-\left[P\left(y^{M}\right)-P^{*}\right] y^{M}-$ minus the lost profits from units between y^{M} and y^{*} - which is the area above the marginal cost curve between y^{M} and y^{*}, up to a height of P^{*}. [That's area A, minus area C, in Varian's figure 25.2.]

Consumers lose $\left[P^{M}-P^{*}\right] y^{M}$, plus the area between the inverse demand curve and the price P^{*}, between y^{M} and y^{*}, in moving from efficiency to single-price monopoly. [That's the area B in Varian's figure 25.5.]

So in Varian's figure 25.5 , moving from efficiency to a single price monopoly increases owners'
profits by $A-C$, and lowers aggregate consumers' surplus by $A+B$. Single-price monopoly is inefficient because the owners' gain $A-C$ must be less (by $B+C$) than consumers' loss $A+B$.

If a monopoly could price discriminate perfectly, then it would sell the efficient quantity y^{*}. It would gain the area $A+B$ in profit, compared to a perfectly competitive industry. This gain equals the total consumers' loss, so that a perfectly price discriminating monopoly would be efficient.
[A monopoly that price discriminates, but not perfectly, would also be inefficient. It might be more or less efficient than a single-price monopoly. For example, a monopoly which charged two different prices to two different groups would actually be less efficient than a single-price monopoly, provided that it did not produce a higher total quantity of output than the single-price monopoly.]
$Q 2$. If the market demand curve for the product of some duopoly had the equation

$$
Y=24-p
$$

where $Y=y_{1}+y_{2}$ was the total quantity produced by the two firms in the industry, and p the price paid by buyers, and if each firm (firm \#1 and firm \#2) could produce the product at zero cost,
(a) What is the equation of firm 2 's reaction function, if it chose its own quantity y_{2}, taking as given firm \#1's quantity y_{1} ?
(b) What quantities of the good would each firm produce in the Cournot-Nash equilibrium (when each firm chooses its quantity, taking the other firm's quantity as given)?
$A 2$. If the (regular) demand function for the good has the equation

$$
Y=24-p
$$

then the inverse demand function has the equation

$$
P(Y)=24-Y
$$

That means that, if firms \#1 and \#2 choose output quantities y_{1} and y_{2}, then the price that each firm will receive for its output is

$$
P\left(y_{1}+y_{2}\right)=24-y_{1}-y_{2}
$$

Firm \#2's profit is its revenue minus its total costs of production. But here each firm can produce the good for nothing, so that

$$
\pi_{2}=P\left(y_{1}+y_{2}\right) y_{2}=\left(24-y_{1}-y_{2}\right) y_{2}=\left(24-y_{1}\right) y_{2}-\left(y_{2}\right)^{2}
$$

If firm \#2 takes y_{1} as given, then maximizing π_{2} with respect to its own output y_{2} means setting the derivative of π_{2} with respect to y_{2} equal to zero. That means

$$
24-y_{1}-2 y_{2}=0
$$

or

$$
\begin{equation*}
y_{2}=12-\frac{y_{1}}{2} \tag{a}
\end{equation*}
$$

Equation (a) is the equation for firm \#2's reaction function.
If firm \#1 maximized its profits, taking y_{2} as given, then it would have a reaction function

$$
\begin{equation*}
y_{1}=12-\frac{y_{2}}{2} \tag{r1}
\end{equation*}
$$

In Cournot-Nash equilibrium, each firm is on its reaction function, so that the equilibrium quantities y_{1}^{E} and y_{2}^{E} must satisfy both equations (a) and equation ($r 1$). So, substituting for y_{2} from (a) into (r1) yields

$$
\begin{equation*}
y_{1}=12-\frac{1}{2}\left[12-\frac{y_{1}}{2}\right] \tag{r1e}
\end{equation*}
$$

Multiplying both sides of equation ($r 1 e$) by 4 , it becomes

$$
\begin{equation*}
4 y_{1}=48-24+y_{1} \tag{r1e2}
\end{equation*}
$$

or

$$
\begin{equation*}
y_{1}^{E}=8 \tag{b1}
\end{equation*}
$$

substituting from (b1) into (a),

$$
\begin{equation*}
y_{2}=12-\frac{8}{2}=8 \tag{b2}
\end{equation*}
$$

so that $y_{1}=y_{2}=8$ in the Cournot-Nash equilibrium.
$Q 3$. Write down the payoff matrix of the following game :
The players are two sellers, who each have 2 used cell phones to sell. Each seller has no use at all for either of the used cell phones that he or she owns ; he or she wants to sell them. There are 2 identical potential buyers. Each buyer is willing to pay up to $\$ 10$ for a used cell phone ; each buyer wants to buy at most one phone ; each buyer will buy from the cheapest seller (if the cheapest seller charges a price of $\$ 10$ or less).

Each seller must choose a price to ask for her or his cell phones : the price must be one of $\{\$ 5, \$ 10, \$ 15\}$. When a seller picks a price, this is a commitment to sell each phone for that price, to whatever buyer is willing to buy. If both sellers choose the same price (of $\$ 10$ or less), buyer \#1 buys from seller \#1 and buyer \#2 buys from seller \#2.

The 2 sellers choose their prices (from the set of possible prices $\{\$ 5, \$ 10, \$ 15\}$) independently, and simultaneously.
[note : You are not required to solve this game, just to write down the payoff matrix for the game.]

A3. The strategies for player \#1 are the three possible prices, $\$ 5, \$ 10$ and $\$ 15$, and player \#2 also has those same three strategies. Charging $\$ 15$ leads to no revenue, since neither buyer is willing to pay $\$ 15$. Any lower price $p(p \in\{5,10\})$ will give a seller revenue of $2 p$ if it is the lowest-priced, p if the two sellers are tied, and 0 if she asks a higher price than the other seller.

So the payoff matrix is :
$\$ 5 \quad \$ 10 \quad \$ 15$

$\$ 5$	$(5,5)$	$(10,0)$	$(10,0)$
$\$ 10$	$(0,10)$	$(10,10)$	$(20,0)$
$\$ 15$	$(0,10)$	$(0,20)$	$(0,0)$

Q4. Find all the Nash equilibria to the game with the following payoff matrix.

	L	M	R
t	$(1,1)$	$(2,1)$	$(3,0)$
b	$(0,0)$	$(5,5)$	$(10,2)$

A4. A Nash equilibrium is a pair of strategies, one for each player, such that neither player can do better by changing her strategy, given what her rival is doing.

In a payoff matrix, a Nash equilibrium is a row and column, such that player \#1 cannot increase her payoff by changing the row (given the column chosen by player \#2), and that player \#2 cannot increase his payoff by changing the column (given the row chosen by player \#1).

In this example (t, L) and (b, M) are both Nash equilibria.
(t, L) : if player \#2 chooses column L, than player \#1 cannot do better than choosing the top row, since the bottom row would give her a payoff of $0<1$; if player $\# 1$ chose row t, then player \#2 gets a payoff of 1 from choosing the column L : he cannot do better than that, given player \#1's choice of t, since M also gives him a payoff of 1 , and R gives him a payoff of 0
(b, M) : if player $\# 2$ chose column M, then player \#1 gets a payoff of 5 from choosing row b, which is greater than the payoff of 2 she would get from her other choice, row t; on the other hand, if player $\# 1$ chooses row b, then player $\# 2$ should pick column M, since that gives him a payoff of 5 , as opposed to 0 from L and 2 from R

No other pair of strategies is a Nash equilibrium : at (t, M) player \#1 would like to move down to b; at (t, R) player \#1 would like to move down to b; at (b, L) player \#1 would like to move up to t; at (b, R) player $\# 2$ would like to move left to M.
[And there is no other Nash equilibrium in mixed strategies in this game. (Since M is a weakly dominant strategy for player $\# 2$, if player $\# 1$ were to mix between her 2 strategies, then player \#2 would always find M gives him a higher expected payoff than L or R, so that he would never be willing to mix among his strategies if player \#1 mixed among her 2 strategies.)]

