
Optimal Taxation : (a) Ramsey’s Rules for Optimal Commodity Taxation

The theory of optimal taxation is really an extension of the material in the previous chapter

on efficiency : taxes have an excess burden, unless they are lump–sum taxes ; lump–sum taxation

is impossible ; so how should taxes be designed so as to minimize the excess burden?

Much of the work to answer this question has already been done. In the previous section (in

the fourth lecture, “Formulae for Excess Burden”) , a formula for the excess burden of a tax was

derived : that formula gave some hints as to which commodities should be taxed, and how much.

What that analysis missed was the inter–relation between different taxes. But in that section there

is a brief discussion of that issue : how an increase in the tax on tea (a substitute for coffee) would

reduce the excess burden of any excise tax in place on coffee, and might even reduce the overall

excess burden of the tax system. That result will be applied here as well.

Optimal commodity taxation can be started with the following, somewhat artificial, problem

: the government needs to raise a fixed amount of tax revenue, R. The only way the government

can get the revenue is through excise taxes, on goods X and Y . So the government has to choose

excise tax rates tX and tY on the two goods, so as to collect R dollars in total — and they want

to do that at the least possible damage to the taxpayer. Or, to put it another way, they want to

set taxes so as to raise the required amount R of revenue with the smallest possible excess burden.

Why is this problem “artificial”? First, I’m restricting the government to use excise taxes to

raise its revenue. And second — and this is a bigger issue — the government is collecting the tax

revenue from a single taxpayer.

That is, the concept of excess burden, or of compensating variation, refer to a single individual.

And the basic problem, described above, uses those concepts. So, taken literally, this basic problem

applies only in a country with a single taxpayer, or a country in which all taxpayers are identical,

or in a country where we can ignore differences among taxpayers. This formulation is a limitation

of the basic model. But it turns out that some of the results and formulae can be applied in a

more realistic, complicated setting in which we care about differences among taxpayers.

I’m also going to assume that the “net of tax” prices px and py of the goods are given. The

tax–included prices are

PX = px + tx (1)

PY = py + ty (2)

The tax revenue collected will be txX from the tax on good X, and tyY from the tax on good

Y . Now the quantity consumed of each good will depend on the prices of both goods. I’ll use the

compensated demand functions here, because those are the demand functions I used in deriving

the formulae in the section on efficiency. That means that the total revenue collected is

R = txX
H(PX , PY , u) + tyY

H(PX , PY , u) (3)

Equation (3) is the revenue constraint which the government must meet : they must choose tax

rates tX and tY which satisfy (3), for the fixed revenue target R which they have been given.
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The government wants to minimize the cost to the taxpayer of these taxes. From the first

lecture in the previous section on efficiency, that cost, in dollars, is

E(px + tx, py + ty, u)− E(px, py, u) (4)

Therefore, the government’s problem is to minimize the cost (4) to the taxpayer, subject to meeting

the revenue constraint defined by equation (3).

To solve this problem, the method of Lagrange can be used. Minimization of (4) subject to

the constraint (3) can be solved by setting up the Lagrange multiplier problem

E(PX , PY , u)− E(px, py, u) + λ[R− txXH(PX , PY , u)− tyY H(PX , PY , u)] (5)

where λ is the Lagrange multiplier attached to the revenue constraint (3). We then minimize

expression (5) with respect to tx, ty and λ, by setting the derivatives of expression (5) with respect

to tx, ty and λ equal to 0.

So, the government’s optimal excise tax rates tx and ty solve

∂E(PX , PY , u)

∂PX
− λ[X + tx

∂XH

∂PX
+ ty

∂Y H

∂PX
] = 0 (6)

∂E(PX , PY , u)

∂PY
− λ[Y + tx

∂XH

∂PY
+ ty

∂Y H

∂PY
] = 0 (7)

R− txXH(PX , PY , u)− tyY H(PX , PY , u) = 0 (8)

where I have used the facts that PX = px + tx and PY = py + ty and px and py are fixed, so that

changing tx by 1 dollar is the same thing as changing PX by 1 dollar.

Equation (8) is just equation (3), so there’s nothing new there.

Equations (6) and (7) can be simplified using Shephard’s Lemma, from lecture 1 in the section

on efficiency : the partial derivative of the expenditure function with respect to the price of a good

must equal the compensated demand for the good : ∂E(PX ,PY ,u)
∂PX

= XH and ∂E(PX ,PY ,u)
∂PY

= Y H .

That makes (6) and (7) into :

(λ− 1)X = −λ[tx
∂XH

∂PX
+ ty

∂Y H

∂PX
] (9)

(λ− 1)Y = −λ[tx
∂XH

∂PY
+ ty

∂Y H

∂PY
] (10)

Now if I divide both sides of equation (9) by X, and then by λ, and divide both sides of equation

(10) by Y and then by λ, then we have (the same) (λ− 1)/λ on both sides, so that

[tx
∂XH

∂PX
+ ty

∂Y H

∂PX
]

X
=

[tx
∂XH

∂PY
+ ty

∂Y H

∂PY
]

Y
(11)
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One more adjustment : one of the nice properties of the compensated demand functions is that

their partial derivatives are symmetric : ∂XH

∂PY
= ∂Y H

∂PX
. [That result was presented at the end of

the first lecture in the section on efficiency.] So equation (11) becomes

[tx
∂XH

∂PX
+ ty

∂XH

∂PY
]

X
=

[tx
∂Y H

∂PX
+ ty

∂Y H

∂PY
]

Y
(12)

Equation (12) is Ramsey’s basic rule for the optimal system of commodity taxes : if the excise

taxes tX and tY are set so as to raise the required revenue at the minimum possible damage to the

taxpayer, then equation (12) must hold.

Equation (12) is the exact rule for the “best” commodity tax system : the one which raises

the given revenue with the lowest possible excess burden. In other words, if the government agency

wants to see how efficient its commodity taxes are, it should be checking two things : (i) whether

enough revenue is raised (tXX+ tyY = R) and (ii) whether, when they estimate the derivatives of

the compensated demand functions, equation (12) is satisfied. If (12) holds, then the commodity

tax system is the best possible, given the revenue needs.

There are several interpretations, and special cases, of the Ramsey rule. But (12) is the basic

equation : the other forms of Ramsey rule derived below follow from (12).

Suppose that we start with no taxes at all, so that the prices of the two goods are px and py.

Now if we put taxes tX and tY on the two goods, their prices will increase to PX = px + tx and

PY = py + ty respectively. So the changes in the prices of the two goods are

∆PX = tx (13)

and

∆PY = ty (14)

What would be the change in quantity demanded of the two taxed goods X and Y , due to the

introduction of the excise taxes?

The quantity demanded of good X should change, if we introduce taxes, because the price of

good X will have changed from px to px + tX . This increase in the price of good X (if tX > 0)

must cause quantity demanded of good X to decrease.

But the price of good Y has changed as well, and that change in PY may also affect quantity

demanded for good X. So the overall change in quantity demanded of good X is

∆X ≈
∂X

∂PX
∆PX +

∂X

∂PY
∆PY =

∂X

∂PX
tX +

∂X

∂PY
tY (15)

Similarly,

∆Y ≈
∂Y

∂PX
∆PX +

∂Y

∂PY
∆PY =

∂Y

∂PX
tX +

∂Y

∂PY
tY (16)

Now if I plug equations (15) and (16) into the exact, general rule (12) for the optimal tax system,

(12) becomes
∆X

X
≈ ∆Y

Y
(17)
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Equation (17) is another version of the Ramsey rule. There will be 3 versions of the Ramsey rule

in total in this section : the exact general formula (12), equation (17), which was just derived, and

another special case which is yet to come.

Equation (17) is usually referred to as the equi–proportional version of the Ramsey rule.

EQUI–PROPORTIONAL RAMSEY RULE : If a commodity tax system is optimal, it

should reduce the quantities demanded of each taxed good by approximately the same proportion.

Why the “approximately” in the statement of the equi–proportional version of the rule (and

the approximation sign in equations (15), (16) and (17))?

There are two reasons why this rule is an approximation.

First, the (exact) equation (12) used the derivatives of the Hicksian demand functions. Like

all derivatives, these are defined for very small — infinitesimally small – changes in the prices of

the goods. But equations (15) and (16) use the changes in prices caused by the taxes : ∆Px = tX

and ∆PY = tY . These changes might not be so small. When taxes are relatively big, as a fraction

of the prices of the goods, then the derivatives are just an approximation of the overall (not so

small) effects of the price changes. [If the demand functions were linear in prices, so that the

derivatives were constants, then these derivatives would provide an exact measure. But demand

functions aren’t always linear.]

Second, the demand functions used in equation (12) are the Hicksian, or compensated demand

functions. These refer to the effects of price changes on quantities demanded when the consumer

is compensated so as to remain on the same indifference curve. If the tax authorities do not

actually compensate the consumers, then we are using these compensated demand derivatives to

approximate the effect of price changes which will not be compensated. So a more precise version

of the equi–proportional Ramsey rule would be : “If a commodity tax system is optimal, it should

reduce the quantities demanded of each taxed good by approximately the same proportion, if the

consumer were compensated so as to stay on the same indifference curve.”.

The first two versions (equations (12) and (17)) of the Ramsey rule say nothing explicit about

the actual tax rates themselves, only about the overall effects of those rates. But there is a fairly

simple formula which does involve the tax rates themselves, also due to Ramsey.

Let |ηX | and |ηY | be the compensated own price elasticities of demand for the two goods

(defined so as to have a positive sign). That is

|ηX | = −
∂XH

∂PX

PX

X
(18)

|ηY | = −
∂Y H

∂PY

PY

Y
(19)

That means that

−∂X
H

∂PX
= |ηX |

X

PX
(20)
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− ∂y
H

∂PX
= |ηY |

Y

PY
(21)

Now if I ignore the “cross–price” effects ∂XH

∂PY
and ∂Y H

∂PX
in equations (9) and (10), they become

λ− 1

λ
= −∂X

H

∂PX

tX
X

= −∂X
H

∂PX

PX

X

tX
PX

= |ηX |
tX
PX

(22)

and
λ− 1

λ
= −∂Y

H

∂PY

tY
Y

= −∂Y
H

∂PY

PY

Y

tY
PY

= |ηY |
tY
PY

(23)

Now tX/PX is just the tax rate : the tax as a proportion of the price. I used the notation τX

earlier (in section 2, “Tax Incidence”) to denote that tax rate. With that notation, (22) and 23)

become

|ηX |τX = |ηY |τY (24)

or
τX
τY

=
ηY
ηX

(25)

Equation (25) is the third version (the first 2 versions were equations (12) and (17)) of the Ramsey

rule. Equation (25) is often referred to as the inverse elasticity version of the Ramsey rule,

because it says that tax rates on different goods should be inversely proportional to the goods’

compensated own–price elasticities of demand.

That is, if good X had an own–price elasticity of demand of 0.5, and good Y had an own–price

elasticity of 1.5, then equation (25) implies that the optimal tax rate should be higher on good X

than on good Y , and that it should be 3 times higher on good X, because ηX is 1/3 of ηY .

The advantage of the own–price elasticity rule is that it is defined directly in terms of the tax

rates themselves. The equi–proportional version, equation (17), describes the effects of the tax

rates on quantities demanded of the taxed goods, if the taxes are set optimally. It says nothing

directly about the tax rates themselves. Equation (25) says that if τX = 2τY , these taxes are

optimal only if ηX = (0.5)ηY .

There is also some intuition behind the prescription of the inverse elasticity rule. It says that

we should levy the highest tax rates on goods which have inelastic (with respect to their own

price) demands. The problem with excise taxes, as far as efficiency is concerned, is that they

distort people’s behaviour, inducing them to substitute away from the taxed good and towards

untaxed goods, even when the actual cost of production of these goods have not changed. The

bigger the substitution, the bigger the cost of the tax, and the bigger the excess burden of the

tax relative to the revenue raised. In the extreme, if good X were a perfect complement to some

untaxed goods, with L–shaped indifference curves, then there would be no excess burden from a

tax on good X. So rule (25) says that if there is some good with a (nearly) inelastic demand, then

the government should raise (nearly) all its revenue from taxing that good, because they can then

raise their tax revenue with (nearly) no excess burden at all.
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However there is a big problem with the inverse elasticity version of the Ramsey rule, a

problem it does not share with the other versions of the rule. In deriving equations (22) and (23),

which led to this inverse elasticity rule, I ignored the cross–price effects ∂XH

∂PY
and ∂Y H

∂PX
. Is that a

legitimate simplification? No. In general, these cross–price effects are not 0, and ignoring them

means that equation (25) is not actually equivalent to the general Ramsey rule.

In other words, the inverse elasticity rule is an approximation, and the approximation is valid

only if the cross–price effects are close to zero. That is, rule (25) is only useful if we think that the

taxed goods X and Y are not particularly good substitutes for each other, and not particularly

good complements to each other. If we can only tax tea and coffee, then we should not use the

inverse elasticity version of the Ramsey rule, because we think that tea and coffee may be pretty

strong substitutes for each other. If we can only tax people’s club memberships, and people’s

expenditure on sports equipment, then we should not use the inverse elasticity version of the

Ramsey rule. It seems reasonable that membership in a sports club would be complementary with

purchase of equipment to use at the club, so that in this case we’d expect ∂XH

∂PY
= ∂Y H

∂PX
< 0.

So the inverse elasticity version of the Ramsey rule is in many ways more convenient and

practical than the equi–proportional version. But it can be very misleading. The equi–proportional

version is valid always, even when the goods are strong complements or substitutes. If the goods

are not strong complements or substitutes, then the two versions of the rule will give the same

prescription for which tax rates are optimal. If they are strong complements or substitutes, then

the two versions of the rule may disagree. In this case, it’s the equi–proportional version which is

more accurate.
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