
AS/ECON 4080 Answers to Assignment 1 February 2005

1. If good Z is non–rival, and good X is rival, then in any efficient allocation, the Samuelson
condition must hold :

MRS1
ZX + MRS2

ZX + · · ·+ MRSN
ZX = MRT

if there were N people.
Any efficient allocation must also have aggregate production which is efficient : that is (Z,X)

must be on the production possibility frontier, if there were only two goods, and if Z and X denoted
the total quantities produced of the goods.

If good Z is a pure public good (and not a pure public bad), then it will be efficient to have

z1 = z2 = · · · = zN = Z

With only two goods, one rival and the other non–rival, these two conditions are the only
requirements for efficiency. In this question, in which there are only two people, then an efficient
allocation is any list (x1, x2, Z) of quantities of goods allocated to the two people, such that each
quantity is non–negative, such that the list satisfies the Samuelson condition, and such that the
aggregate production (x1 + x2, Z) is efficient.

In this case, since the production possibility frontier has the equation

X2 + Z2 = 180

then it also can be written
X =

√
180− Z2 ≡ F (Z) (1)

so that the marginal rate of transformation, −F ′(X), is, from differentiation of equation (1) above,

MRT = −F ′(Z) =
Z√

180− Z2
=

Z

X
(2)

The Samuelson condition is

MRS1
ZX + MRS2

ZX = MRT

Since
U1(x1, Z) = lnx1 + 4 ln Z

then
∂U1

∂x1
=

1
x1

∂U1

∂Z
=

4
Z
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so that
MRS1 =

4x1

Z
(3)

Similarly

MRS2 =
4x2

Z
(4)

That means that in this question, equations (2), (3) and (4) imply that the Samuelson condition is

4x1

Z
+

4x2

Z
=

Z

X
(5)

Since x1 + x2 = X, equation (5) can be written

4X

Z
=

Z

X
(6)

which is the same as
4X2 = Z2

or
Z = 2X (7)

Substituting equation (7) into the equation of the production possibility frontier,

5X2 = 180

so that X = 6, and Z = 12.
In this case (because the two people have identical, homothetic preferences), there is a unique

efficient level of public good production, Z = 12. Any allocation (x1, x2, Z), with x1 ≥ 0, x2 ≥ 0,
x1 + x2 = 6, and Z = 12 will be efficient.

2. In this question, the equation of the production possibility frontier,

X + Z = 36

can be written
X = 36− Z ≡ F (Z) (1)

so that the marginal rate of transformation is

MRT ≡ −F ′(Z) = 1 (2)

Since person 1’s utility function is

U1 = 2 lnx1 + 3 ln Z
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then
∂U1

∂x1
=

2
x1

∂U1

∂Z
=

3
Z

so that

MRS1
ZX =

3x1

2Z
(3)

And
∂U2

∂x2
=

2
x2

∂U2

∂Z
=

1
Z

so that

MRS2
ZX =

x2

2Z
(4)

Now an efficient allocation is any non–negative (x1, x2, Z) with

x1 + x2 + Z = 36 (5)

and with
3x1

2Z
+

x2

2Z
= 1 (6)

The Samuelson condition (6) can be written

3x1 + x2 = 2Z (7)

Any allocation (x1, x2, Z) that satisfies equations (5) and (7),with (x1, x2, Z) all non–negative,
will be efficient. Substituting for x2 = 36 − x1 − Z from equation (5) into equation (7) reduces
these two equations to

3x1 + (36− x1 − Z) = 2Z

or

2x1 = 3Z − 36 (8)

For example, x1 = 0, x2 = 24, Z = 12 satisfies equations (5) and (7), and is an efficient allocation.
So are x1 = 6, x2 = 14, Z = 16, and x1 = 12, x2 = 4, Z = 20, and x1 = 14.4, x2 = 0, Z = 21.6.

The general form for all efficient allocations in this example is, then : x1 can be any quantity
between 0 and 14.4 ; whatever x1 is, then Z = 2

3x1 + 12 (from equation (8)), and x2 = 24− 5
3x1.

3. To answer this question, what is needed first are the demand functions when a person has
Cobb–Douglas preferences, a topic covered, for example, in the appendix to chapter 5 of Varian’s
textbook.
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If

U(x, z) = (1− α) lnx + α ln z

then
∂U

∂x
=

(1− α)
x

∂U

∂z
=

α

z

so that

MRSzx =
αx

(1− α)z
(1)

If the person has income Y , and can buy the two goods at prices px and pz respectively, then she
will choose a consumption bundle where her indifference curve is tangent to her budget line. This
tangency means that

MRSzx =
pz

px

or (from equation (1))
αx

(1− α)z
=

pz

px
(2)

in this case. The fact that she is on her budget line means that

pxx + pzz = Y (3)

To find the person’s demand function for good z, equations (2) and (3) must be solved to get z as
a function of Y , px and pz.

Equation (2) can be written

αpxx = (1− α)pzz (4)

Substituting from (4) for pxx in (3) yields

(1− α)
α

pzz + pzz = Y

or
(1− α)

α
pzz +

α

α
pzz = Y

meaning that

pzz = αY (5)

so that the demand curve for the public good of person 1 is

ZD
1 = α

Y1

p1
z

(6)

if she had income of Y1,and could buy the public good at a price of p1
z.

4



For solving the Lindahl equilibrium, we need the inverse demand function, the price as a
quantity consumed, which is

p1
z = α

Y1

Z
(7)

Similarly, person 2’s inverse demand function for the public good is

p2
z = β

Y2

Z
(8)

The Lindahl pricing rule is to set the sum of the two people’s Lindahl prices equal to the MRT , or

α
Y1

Z
+ β

Y2

Z
= MRT

which can be written
αY1 + βY2 = (MRT )Z (9)

If the MRT is a constant, then

Z =
αY1 + βY2

MRT
(10)

so that increasing Y2 by $1000 and decreasing Y1 by $1000 would increase the optimal public good
supply by

(β − α)
1000
MRT

If β > α, then person 2 has a stronger taste for the public good than person 1. In particular, his
income elasticity of demand for the public good would be higher than person 1’s. So transferring
money from person 1 to person 2 would increase the overall quantity of the public good, when the
Lindahl pricing rule is used.

4. How many trips to the park would a person take, if she had to pay an admission charge of
p per trip? If she took m trips, at a price of p each, then she would have y− T − pm left to spend
on the private good, if her income were y and if she had to pay a head tax of T . That means that
her overall utility, if she faced a price of p, per trip, and chose to take m trips, would be

y − T − pm + [12m−m2]Z (1)

The number of trips that she actually would choose to take is the value m which maximizes her
utility (1). Taking the derivative of expression (1) with respect to m, and setting it equal to zero,
yields

(12− 2m)Z − p = 0 (2)

or
m =

12Z − p

2Z
(3)

which is her demand function for trips to the park, as a function of the size of the park, and of the
price p charged per visit.
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Now if I substitute for m back into equation (1), her overall utility, if she had to pay a price
p for each trip, and if she chose her preferred number of trips, would be

y − T − p
12Z − p

2Z
+ [12

12Z − p

2Z
− (

12Z − p

2Z
)2]Z

or
y − T +

12Z − p

2Z
[12Z − 12Z − p

2Z
Z − p]

which equals

y − T +
1

4Z
(12Z − p)2 (4)

Now if the government builds a park of size Z, and charges an admission price of p per visit, then
each person will make (12Z − p)/2Z visits (from equation (3)), so that the total revenue it will
collect from admission charges is

12Z − p

2Z
Np (5)

if there are N people in the district. The cost of the park is Z2, so that the government must raise
the remaining revenue,

Z2 − 12Z − p

2Z
Np (6)

from head taxes. Since there are N people paying the same head tax, the head tax is expression
(6) divided by N , or

T =
Z2

N
− 12Z − p

2Z
p (7)

Substituting from equation (7) into expression (4), the utility of a typical citizen will be

y − Z2

N
+

12Z − p

2Z
p +

1
4Z

(12Z − p)2 (8)

if the government builds a park of size Z, and charges an admission fee of p per visit.
This expression is the same as

y − Z2

N
+ (12Z − p)[

12Z − p

4Z
+

p

2Z
]

or
y − Z2

N
+

(12Z − p)(12Z + p)
4Z

which can be written
y − Z2

N
+

144Z2 − p2

4Z
(9)

The optimal size of park and admission fee are the values of Z and p which makes each citizen as
well–off as possible : so we maximize expression (9) with respect to p and Z. Taking the partial
derivatives of (9) with respect to p and Z respectively, and setting them equal to zero, yields

−2p

4Z
= 0 (10)
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36 +
p2

4Z2
− 2Z

N
= 0 (11)

Equation (10) says that the optimal charge per visit should be zero! Substituting p = 0 into
equation (11), the optimal size Z for the park is

Z = 18N (12)

Equation (12) is actually the Samuelson condition. If the price is set optimally, at p = 0, then
equation (3) says that each person takes m = 6 trips to the park. Then the person’s utility can be
written

U = x + (12(6)− 62)Z = x + 36Z (13)

Equation (13) implies that the person’s MRS, UZ/Ux equals 36. Since the cost of the park is Z2,
then

MRT = 2Z

so that the Samuelson condition, when there are N people in the district, is

N(MRS) = 36N = MRT = 2Z (14)

which is just equation (12).
The most important point is the optimality of a price of $0 per trip. And that result can be

derived without much of the mathematics. Suppose that a price p > 0 per trip is charged, as in
the accompanying figure.

Charging a positive price yields tax revenue, as labelled in the figure ((1200)(3) = 3600 dollars
per person in the figure). Lowering the price to 0 would lose deprive the government of this revenue,
forcing them to raise the head tax by the amount of the lost revenue.

But lowering the price would also benefit the each citizen, by inducing her to take more trips
to the park. The measure of the consumer’s benefit is the area under her demand curve. Lowering
the price increases each consumer’s benefit (her consumer surplus) by the area beneath the demand
curve, between the heights of 0 and p. In the figure, that gain is the rectangle labelled “tax revenue”,
plus the triangle labelled “excess burden”. (Its value is (1200)(3) + (0.5)(3)(1200) = 5400 dollars
in the figure.)

The triangle is labelled “excess burden”, because it is the excess burden, or deadweight loss,
or charging a price in excess of marginal cost (the marginal cost of allowing another trip is zero
here). Lowering the price to zero, and raising the head tax to make up for the lost revenue, gives
net gain to each citizen of the area of that triangle. So — regardless of what is the size Z of the
park — it always makes citizens better off to lower the price of admission if the price is positive.
The optimal price is 0, if any revenue shortfall can be covered by a head tax.
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5. What is the net benefit — to everyone — of having some driver take one more trip? The
net benefit to the driver herself is MB. Suppose that there are N other drivers on the road at
the same time. Each of these other drivers may be affected, by having the first driver take this
additional trip. For each of these N drivers, the additional trip increases the number O of other
drivers on the road, and so affects each of these N drivers by ∂MB/∂O.

So if the road is not congested, that is if the number of drivers on the road is less than Ō,
having the driver take one more trip imposes no costs on other drivers. If the driver wants to take
the trip, she should be allowed to do so. In other words, if the number of drivers on the road is
less than Ō, then an additional trip should be encouraged if the driver gets a positive net benefit
MB from it. That means that the toll should be 0, if the number of drivers on the road at that
particular time of day would be Ō or less (in the absence of tolls). Charging a toll would discourage
people from taking trips, which do not harm other drivers, and which would yield positive benefits
to the driver taking the trip.

But if the road is congested, then each additional trip imposes costs of

−∂MB

∂O

on each of the N drivers already on the road. The overall net benefit — to all drivers together —
is

MB + N
∂MB

∂O
(1)

The first term in the above expression is the benefit to the driver taking the trip ; the second term
is the costs imposed on the N other drivers.

So should the driver take the additional trip? Only if the benefit to the driver, MB, exceeds
the damage −N(∂MB/∂O) that the trip imposes on other drivers.

Of course we probably don’t know the exact value of each trip to each driver. How do we
encourage only trips that are valued more, that is only encourage trips for which the marginal
benefit to the driver is −N(∂MB/∂O) or more?

What if we charged a toll of t per trip? Each driver would only take a trip if the value to her
of the trip exceeded the toll, that is, if MB > t. So charging a toll of t guarantees that only trips
which drivers think are important will get taken, only trips for which the marginal benefit is t or
more. By setting a toll of

t = −N
∂MB

∂O
(2)

then we guarantee that the only trips which are taken are those trips for which the benefit to the
driver exceeds the costs imposed on the other driver.

Thus equation (2) defines the optimal toll for the highway. Note that the first case, a zero toll
when the road is not congested, is a special case of formula (2), applicable when O < Ō.
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