AS/ECON 4080 ASSIGNMENT 1

Due : Wednesday January 252005 : before class

Do all 5 questions. All count equally.

1. What are all the efficient allocations in the following two-good, two-person economy?

Good X is a pure private good, and good Z is a pure public good. The economy's production possibility frontier has the equation :

$$
X+Z^{2}=360
$$

where X and Z are the total quantities produced of the private good and of the public good, respectively.

Person 1's preferences can be represented by the utility function

$$
U^{1}\left(x_{1}, z_{1}\right)=x_{1}+50 z_{1}-2\left(z_{1}\right)^{2}
$$

and person 2's by the utility function

$$
U^{2}\left(x_{2}, z_{2}\right)=x_{2}+30 z_{2}-\left(z_{2}\right)^{2}
$$

where x_{i} is person i 's consumption of the private good, and z_{i} is person i 's consumption of the public good.
2. What are all the efficient allocations in the following two-good, two-person economy?

Good X is a pure private good, and good Z is a pure public good. The economy's production possibility frontier has the equation :

$$
X+Z=60
$$

Person 1's preferences can be represented by the utility function

$$
U^{1}\left(x_{1}, z_{1}\right)=2 \ln x_{1}+8 \ln z_{1}
$$

and person 2's by the utility function

$$
U^{2}\left(x_{2}, z_{2}\right)=\ln x_{2}+\ln z_{2}
$$

where x_{i} is person i 's consumption of the private good, and z_{i} is person i 's consumption of the public good.
3. What would the Lindahl equilibrium allocation be for the economy described in question \#1 above, if the price of the private good were 1 , if person \#1's income were 240 , and if person \#2's income were 120 ?
4. A city contains N identical people, each of whose preferences can be represented by the utility function

$$
U(x, z)=x+a \ln z
$$

where x is the person's consumption of a private good, z is the number of trips the person takes per day on a highway, and a will be defined below.

The parameter a measures the speed of traffic flow on the road, and is defined as

$$
a=\sqrt{\frac{K}{N z}}
$$

where K is the size of the road. The total cost of a road of size K is $c K$.
If the city government could control how many trips each person takes per day on the highway z, and the size K of the road, what would be the efficient choices of z and K ?
5. In the city described in question \#4 above, suppose that the city government could not control directly the number of trips each person could take on the road, but could set a toll p for each trip taken by any person.

What toll should it charge? Would toll revenue cover the cost of the road?

