AS/ECON 4080 Answers to Assignment 1 January 2006

$Q 1$. What are all the efficient allocations in the following two-good, two-person economy?
Good X is a pure private good, and good Z is a pure public good. The economy's production possibility frontier has the equation :

$$
X+Z^{2}=360
$$

where X and Z are the total quantities produced of the private good and of the public good, respectively.

Person 1's preferences can be represented by the utility function

$$
U^{1}\left(x_{1}, z_{1}\right)=x_{1}+50 z_{1}-2\left(z_{1}\right)^{2}
$$

and person 2's by the utility function

$$
U^{2}\left(x_{2}, z_{2}\right)=x_{2}+30 z_{2}-\left(z_{2}\right)^{2}
$$

where x_{i} is person i 's consumption of the private good, and z_{i} is person i 's consumption of the public good.

A1. Because the production possibility frontier has the equation $X+Z^{2}=360$, therefore $X=360-Z^{2} \equiv F(Z)$, so that the marginal rate of transformation (MRT) is $-F^{\prime}(Z)$, or

$$
M R T=2 Z
$$

For person $1, M U_{X}^{1}=1$ and $M U_{Z}^{1}=50-4 z_{1}$, so that

$$
M R S^{1} \equiv \frac{M U_{Z}^{1}}{M U_{Z}^{1}}=50-4 z_{1}
$$

For person 2, $M U_{X}^{2}=1$ and $M U_{Z}^{2}=30-2 z_{2}$ so that

$$
M R S^{2} \equiv \frac{M U_{Z}^{2}}{M U_{X}^{2}}=30-2 z_{2}
$$

Since $z_{1}=z_{2}=Z$, since good Z is a pure public good, the Samuelson condition, $M R S^{1}+M R S^{2}=$ $M R T$ here is

$$
80-6 Z=2 Z
$$

or

$$
Z=10
$$

Any allocation $\left(x_{1}, x_{2}, Z\right)$ for which $x_{1} \geq 0, x_{2} \geq 0, Z=10$, and $x_{1}+x_{2}=300-Z^{2}=260$ will be efficient.
$Q 2$. What are all the efficient allocations in the following two-good, two-person economy?
Good X is a pure private good, and good Z is a pure public good. The economy's production possibility frontier has the equation :

$$
X+Z=60
$$

Person 1's preferences can be represented by the utility function

$$
U^{1}\left(x_{1}, z_{1}\right)=2 \ln x_{1}+8 \ln z_{1}
$$

and person 2's by the utility function

$$
U^{2}\left(x_{2}, z_{2}\right)=\ln x_{2}+\ln z_{2}
$$

where x_{i} is person i 's consumption of the private good, and z_{i} is person i 's consumption of the public good.

A2. Because the production possibility frontier has the equation $X+Z=60$, therefore $X=60-Z \equiv F(Z)$, so that the marginal rate of transformation (MRT) is $-F^{\prime}(Z)$, or

$$
M R T=1
$$

For person $1, M U_{X}^{1}=\frac{2}{x_{1}}$ and $M U_{Z}^{1}=\frac{8}{z_{1}}$, so that

$$
M R S^{1} \equiv \frac{M U_{Z}^{1}}{M U_{Z}^{1}}=\frac{4 x_{1}}{z_{1}}
$$

For person $2, M U_{X}^{2}=\frac{1}{x_{2}}$ and $M U_{Z}^{2}=\frac{1}{z_{2}}$ so that

$$
M R S^{2} \equiv \frac{M U_{Z}^{2}}{M U_{X}^{2}}=\frac{x_{2}}{z_{2}}
$$

Since $z_{1}=z_{2}=Z$, since good Z is a pure public good, the Samuelson condition, $M R S^{1}+M R S^{2}=$ $M R T$ here is

$$
\frac{4 x_{1}}{Z}+\frac{x_{2}}{Z}=1
$$

or

$$
\begin{equation*}
4 x_{1}+x_{2}=Z \tag{PAS}
\end{equation*}
$$

Any allocation $\left(x_{1}, x_{2}, Z\right)$, with all 3 consumption levels non-negative, which satisfies the feasibility condition

$$
\begin{equation*}
x_{1}+x_{2}+Z=60 \tag{feas}
\end{equation*}
$$

and the Samuelson condition $(P A S)$ will be efficient.

If we substitute for x_{2} from equation f eas into equation $P A S$, it becomes

$$
4 x_{1}+\left(60-x_{1}-Z\right)=Z
$$

or

$$
\begin{equation*}
Z=30+\frac{3}{2} x_{1} \tag{2-3}
\end{equation*}
$$

If $x_{1}=0$, then equation $(2-3)$ says that $Z=30$, and the feasibility condition then says that $x_{2}=$ $60-0-30=30$. So $\left(x_{1}, x_{2}, Z\right)=(0,30,30)$ is an efficient allocation. But if $x_{1}=10$, then equation $(2-3)$ says that $Z=45$, and the feasibility condition (feas) says that $x_{2}=60-10-45=5$. If x_{1} increases to 12 , then $Z=48$ (from equation $(2-3)$) and $x_{2}=0$.

So any allocation $\left(x_{1}, x_{2}, Z\right)$ will be efficient if (and only if) : (a) $0 \leq x_{1} \leq 12$; (b) $Z=30+\frac{3}{2} x_{1}$; (c) $x_{2}=30-\frac{5}{2} x_{1}$

Q3. What would the Lindahl equilibrium allocation be for the economy described in question $\# 1$ above, if the price of the private good were 1, if person \#1's income were 240 , and if person \#2's income were 120 ?

A3. To find the Lindahl equilibrium, the demand functions of the two people for the public good must be calculated.

If person 1 had to pay p^{1} per unit for the public good (and 1 per unit for the private good), then she would choose a consumption bundle $\left(x_{1}, z_{1}\right)$ such that $M R S^{1}=p^{1}$; that is, she would choose a consumption bundle so that her indifference curve was tangent to her budget line. From the answer to question $1, M R S^{1}=50-4 z_{1}$, which means that she would choose a consumption bundle such that

$$
\begin{equation*}
50-4 z_{1}=p^{1} \tag{3-1}
\end{equation*}
$$

Equation $(3-1)$ defines the inverse demand function for the public good for person 1 : she would demand z_{1} units of the public good at a price of p^{1} only if $50-4 z_{1}=p^{1}$.

Similarly, person 2 would choose a consumption bundle such that

$$
\begin{equation*}
40-2 z_{2}=p^{2} \tag{3-2}
\end{equation*}
$$

if she had to pay a price of p^{2} per unit of the public good.
The answer to question $\# 1$ showed that $Z=10$ in any efficient allocation. Therefore, we must have $z_{1}=z_{2}=Z=10$ in the Lindahl equilibrium. Substituting into equations $(3-1)$ and $(3-2)$, the 2 people's Lindahl prices are $p^{1}=50-4(10)=10$ and $p^{2}=30-2(10)=10$.

Since $Z=10$, each person's total tax bill would be 100 . That would leave person 1 with $240-100=140$ to spend on the private good, and person 2 with $120-100=20$. Also notice that this resulting allocation $-x_{1}=140, x_{2}=20, Z=10-$ is inside the production possibility frontier. Here $x_{1}+x_{2}+Z^{2}=260<360$. The reason for this is that the marginal cost of the
public good (in terms of foregone private good production) slopes up : $-F^{\prime}(Z)=2 Z$. Therefore, the revenue collected from Lindahl taxation exceeds the cost of the public good provision. The extra revenue could be given back to the 2 people to spend on the private good.

Q4. A city contains N identical people, each of whose preferences can be represented by the utility function

$$
U(x, z)=x+a \ln z
$$

where x is the person's consumption of a private good, z is the number of trips the person takes per day on a highway, and a will be defined below.

The parameter a measures the speed of traffic flow on the road, and is defined as

$$
a=\sqrt{\frac{K}{N z}}
$$

where K is the size of the road. The total cost of a road of size K is $c K$.
If the city government could control how many trips each person takes per day on the highway z, and the size K of the road, what would be the efficient choices of z and K ?
$A 4$. If the city built a road of size K, and shared the cost among all the identical residents, then each resident would have $y-\frac{c K}{N}$ left to spend on the private good.

So the city government would like to maximize each resident's utility

$$
y-\frac{C K}{N}+\sqrt{\frac{K}{N z}} \ln z
$$

with respect to K and z.
To do so, differentiate the above expression with respect to z, and with respect to K, and set the derivatives equal to 0 , giving optimality conditions

$$
\begin{array}{cc}
\frac{\ln z}{2 \sqrt{K N z}}-\frac{c}{N}=0 & (f o c-K) \\
\sqrt{\frac{K}{N}}\left[\frac{1}{z} \frac{1}{\sqrt{z}}-\frac{1}{2} \frac{\ln z}{z^{3 / 2}}\right]=0 & (f o c-z)
\end{array}
$$

But equation $(f o c-z)$ is equivalent to

$$
\begin{equation*}
\ln z=2 \tag{4-3}
\end{equation*}
$$

or

$$
z=e^{2}
$$

where e is the base of natural logarithms.
Substituting from equation $(4-3)$ into equation $(f o c-K)$ yields

$$
\begin{equation*}
K^{-1 / 2} N^{-1 / 2} \frac{1}{e}=\frac{c}{N} \tag{4-4}
\end{equation*}
$$

or

$$
\begin{equation*}
K=\frac{N}{(c e)^{2}} \tag{4-5}
\end{equation*}
$$

which is the efficient size of the road.

Q5. In the city described in question \#4 above, suppose that the city government could not control directly the number of trips each person could take on the road, but could set a toll p for each trip taken by any person.

What toll should it charge? Would toll revenue cover the cost of the road?
$A 5$. Suppose drivers had to pay a cost of p per trip on the road. The utility of a driver if she chose to take z trips would be

$$
y-p z+a \ln z
$$

where y is her income. She will treat a as a given constant, out of her control, if there are many people in the city : it is determined by the average number of trips everyone takes, and her own driving has very little influence on that.

So the number of trips z which maximizes her utility is the z which maximizes the above expression, that is the z which makes the derivative of the above expression equal 0 :

$$
\begin{equation*}
\frac{a}{z}=p \tag{5-1}
\end{equation*}
$$

Equation (5-1) defines her demand for trips as a function of the toll she pays : $z=a / p$.
From question 4, if the road is optimal, then

$$
\begin{aligned}
z^{*} & =e^{2} \\
K^{*} & =\frac{N}{(c e)^{2}}
\end{aligned}
$$

so that

$$
a^{*}=\sqrt{\frac{K}{z N}}=\frac{1}{c e^{2}}
$$

From equation (5-1), the toll p which will make drivers choose z^{*} trips, when $a=a^{*}$ is

$$
p^{*}=\frac{1}{c e^{4}}
$$

How much revenue is collected, in total, from tolls? From equation (5-1) it is $N p^{*} z^{*}=N a^{*}$, which equals

$$
N p^{*} z^{*}=\frac{N}{e^{2} c}
$$

The total cost of the road is

$$
c K^{*}=\frac{N}{e^{2} c}
$$

so the taxes collected exactly cover the cost of the road.

