voters/movers : identical preferences u(c, g)

now **not** the "*Persson and Tabellini*" quasi–linear form u = c + H(g)

artificial problem : people could buy **both** *c* and *g* on private markets, at a price of \$1 per unit for *c*, and at a price of p_g dollars per unit for *g*

solving consumer's problem \rightarrow "demand function" $g^D(p_g, y^i)$ for g as function of the good's price, and the consumer's income

assumption : the publicly provided good *g* is a **normal good ASSUMPTION** *I* : $\frac{\partial g^{D}}{\partial y^{i}} > 0$

This assumption does **not** hold for the "Persson–Tabellini" quasi–linear preferences u = c + H(g)

(日) (日) (日) (日) (日) (日) (日)

 θ : **unit cost** of the public good

ASSUMPTION // The cost per person of the public sector does not vary with the population of the jurisdiction.

Assumption *II* : no **economies of scale in population** in the public sector

so cost per person of public output level g^J in jurisdiction J is θg^J

(ロ) (同) (三) (三) (三) (三) (○) (○)

Local Governments

many local governments

local public sector financed by a head tax

ASSUMPTION *III* : The public sector in jurisdiction *J* is financed by a head tax T^J , so that each resident of the jurisdiction pays the same total tax bill T^J .

budget constraint for jurisdiction J:

$$T^J = \theta g \tag{1}$$

(日) (日) (日) (日) (日) (日) (日)

no reference to average income \bar{y}^J in the jurisdiction

Voting

since u(c, g) has "usual" convexity, people have single-peaked preferences

$$c^i = y^i - T^J \tag{2}$$

if person i lives in jurisdiction J, so

$$c^{i} = y^{i} - \theta g^{J} \tag{3}$$

Person *i*'s most preferred quantity $g^*(y^i)$ of the public good maximizes her utility $u(y^i - \theta g^J, g^J)$, so

$$g^*(\mathbf{y}^i) = g^D(\theta, \mathbf{y}^i) \tag{4}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

If the local public sector is chosen by direct vote in each jurisdiction, the quantity chosen in jurisdiction J will be the quantity preferred by the voter of median income :

$$g^{J} = g^{D}(\theta, y^{mJ}) \tag{5}$$

where y^{mJ} is the median income in jurisdiction J

Mobility

new feature : voters are **mobile** between jurisdictions. pause used in a (1956) paper by Charles Tiebout \rightarrow "Tiebout models" where would a person want to move, if she was free to move? her most–preferred level of public output — given that the public sector must be financed by a head tax — is $g^*(y^i)$ she sees a bunch of jurisdictions, each with its own g^J

Sorting

A jurisdiction with a high median income will be providing a higher level of public output, and poorer jurisdictions will be providing lower levels of public output.

person *i* wants to find jurisdiction *J* in which the median income y^{mJ} equals her own income y^i

(ロ) (同) (三) (三) (三) (三) (○) (○)

ASSUMPTION *IV* : Mobility is costless.

Equilibrium

equilibrium :an allocation of people to jurisdictions, and a choice of g^J for each jurisdiction, such that : (*i*) nobody wants to move to another jurisdiction ; (*ii*) nobody in any jurisdiction wants to change the level of public expenditure in that jurisdiction.

RESULT : Under assumptions I-IV, if there are enough different jurisdictions, then in equilibrium each jurisdiction will contain a single income class. Everyone in jurisdiction J will have the same income y^i , and the local public sector in jurisdiction J will provide a level $g^*(y^i)$ of the public output. People of some other income class $y^k \neq y^i$ will live in some other jurisdiction M ($M \neq J$), in which $g^M = g^*(y^k)$.

this equilibrium is **efficient** — every person gets the level of public output she wants, given that she has to pay taxes of θg if she gets a public output level of g (even though there is no freedom of choice **within** a jurisdiction)

"voting with your feet" : here if you can vote with your feet, you don't need to vote at the ballot box

(ロ) (同) (三) (三) (三) (三) (○) (○)