(cf. Persson and Tabellini, pp. 104–108)

different from simple "pairwise majority rule" : legislature has an **agenda**

only a limited number of proposals can be made

Framework

"standard" *Persson–Tabellini* framework : policy is a level *g* of government spending people have single–peaked preferences high–income people prefer lower *g*

except now there are only **3** income groups, and one party for each income group

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 $y_L < y_M < y_R$ (so that $g_L^* > g_M^* > g_R^*$)

one party gets to propose a policy

if no proposal is passed, the default "reversion" policy \bar{g} implemented

no single group (L, M or R) has a majority of voters, so a policy needs the support of at least 2 groups — any 2 — to pass

1 Stage

some party is (randomly) chosen to make a proposal that party introduces some policy g if the proposing party, and one other party (or both other parties) vote for the proposal, then g is implemented if both opposition parties votes against the proposed g, then the reversion policy \overline{g} is implemented

[so "yes" is a vote for the proposal g, and "no" is a vote for the reversion policy \bar{g}]

if the middle party gets to propose, then it can get its most-preferred policy g_M passed

why? if $\bar{g} > g_M$, then single–peakedness says that party R votes for g_M (over \bar{g})

and if $\bar{g} < g_M$, then single–peakedness says that party *L* votes for g_M (over \bar{g})

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

1 Stage, government is L

single–peakedness says that party L must get the support of party M to pass its proposals

case 1 : $g_L < \bar{g}$: *M* prefers g_L to \bar{g} , so party *L* proposes its most–preferred policy (and gets it passed)

case 2 : $g_M < \bar{g} < g_L$: the highest level of spending that party *L* can get passed is \bar{g} (so it proposes the reversion level \bar{g} and gets it passed)

case 3 : $\bar{g} < g_M$: find $\tilde{g}_M > g_M$ which leaves party *M* indifferent between \bar{g} and \tilde{g}_M

that's the largest level of spending which can passed and party *L* will propose that \tilde{g}_M (unless \tilde{g}_M is actually even bigger than what party *L* wants, in which case it proposes g_L) so that the policy chosen (and passed) is min(\tilde{g}_M, g_L)

2 Stages

now : one party (of $\{L, M, R\}$) is chosen to make an initial proposal g_1

if g_1 passes, that's it

if g_1 is defeated, we go to a second stage in the second stage, some **other** party (one of the remaining 2) gets to propose some g_2 and that g_2 goes up against \overline{g}

second stage

if we ever get to the second stage, it's exactly like the one-stage bargaining :

in any 2nd stage, the proposal does get passed, and

party *M* proposes g_M , party *L* proposes g_L , or \bar{g} or the biggest g which can defeat \bar{g} , party *R* proposes g_R , or \bar{g} or the smallest g which can defeat \bar{g}

and all 3 parties can anticipate that this will happen if the initial proposal g_1 is defeated in the first stage

The "Continuation" Game

let \hat{g}_i denote the proposal that party i ($i \in \{L, M, R\}$) proposes (and gets passed) in the 1–stage model which is also the proposal party i will propose, if it gets the chance, in the second stage of the 2–stage model

if p_i is the probability that party i ($i \in \{L, M, R\}$) gets to make the proposal in the second stage (if we do get to a second stage)

then the outcome of the second stage will be \hat{g}_L with probability p_L , $\hat{g}_M = g_M$ with probability p_M and \hat{g}_R with probability p_R — if we get to a second stage and let $\beta < 1$ indicate how much people value the future

so (for example), if the initial proposal (in the first stage) is defeated, party *M*'s expected value from the resulting second stage is

$$V_M = \beta [\rho_L W_M(\hat{g}_L) + \rho_M W_M(\hat{g}_M) + \rho_R W_M(\hat{g}_R)]$$
(1)

which means that party M would vote for some initial 1st-stage proposal (by L or R) g_1 if and only if

 $W_M(g_1) \ge V_M = \beta [p_L W_M(\hat{g}_L) + p_M W_M(\hat{g}_M) + p_R W_M(\hat{g}_R)]$ (2)

they need party *M*'s vote to get that proposal passed so they will propose the largest g_1 that satisfies (2)

[that result depends on

1. party L wants to get party M's support initially, not party R's

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

2. party *L* wants to have its 1st–stage proposal passed

both these statements are true here]

if party *M* gets the initial proposal ...

then they can get their preferred policy g_M passed in the initial stage (for sure)

proof : let Eg_2 be the expected value of the policy which would be chosen in the second stage, if we were to get there :

$$Eg_2 \equiv \rho_L \hat{g}_L + \rho_M \hat{g}_M + \rho_R \hat{g}_R \tag{3}$$

if voters are risk-averse, then for any party *i*,

$$V_i = \beta E W_i(g_2) \le \beta W_i(Eg_2) \le W_i(Eg_2)$$
(4)

so any party would rather have Eg_2 (for sure), then have the vote go to a second stage

if $Eg_2 > g_M$, then

party *R* prefers g_M to Eg_2 , and prefers Eg_2 to having the vote go to a second stage so party *R* would then vote in favour of g_M in the firsts stage

but if $Eg_2 < g_M$, then party *L* prefers g_M to Eg_2 , and prefers Eg_2 to having the vote go to a second stage so party *L* would then vote in favour of g_M in the first stage

A D F A 同 F A E F A E F A Q A

if party *L* gets to choose the policy in period 1, then it will not necessarily have to choose g_M to get its policy passed

but if p_M is high, and β close to 1, it will have to choose a policy close to g_M

[since then party *M* will want to go to a second stage, unless the first–stage policy is almost as attractive to them as g_M]

Many Stages

if we have more than 2 stages, then party *M* will still choose its most–preferred policy g_M whenever it gets the chance so with many stages, the policy is very likely to get to g_M which means that the initial policy must be very close to g_M when there are many stages — if β is not too low