Distributive Spending

(cf. Persson and Tabellini, problem \#6, page 114)
a fixed "pie" of size r has to be divided among $2 n+1$ districts
(where n is any integer)
so a bill is just a vector of payments $\left(x_{1}, x_{2}, \ldots, x_{2 n+1}\right)$, with $x_{i} \geq 0$, and $\sum_{i=1}^{2 n+1} x_{i} \leq r$, where x_{i} is the amount of spending in district i
each district has a single representative, who cares only about the amount of spending in her own district

no Condorcet winner

e.g. : $r=2, n=1$, then the "divide it equally proposal", $\left(x_{1}, x_{2}, x_{3}\right)=(2 / 3,2 / 3,2 / 3)$ will be defeated by the proposal
($1,1,0$), since representatives of districts \#1 and \#2 both prefer the second proposal

LEFT TO THE READER : (i) find a proposal which will defeat $(1,1,0)$; (ii) find another proposal which will defeat the proposal you found in part (i)

an infinite agenda

in stage 1 , one of the $2 n+1$ is chosen randomly to get to make a proposal $\left(x_{1}, x_{2}, \ldots, x_{2 n+1}\right)$; if the proposal passes, that's it if the initial proposal is defeated in stage 1 , then we go to stage 2 ; again a proposer is chosen at random and again the story ends if the allocation he proposes is passed
if the proposal in stage 2 is defeated, then we go to stage 3 , in which a proposer is again chosen at random and so on
so the process ends as soon as a proposal is passed, but the process could go on forever

minimum coalition

if a representative gets to make a proposal, she'll want the coalition to be the smallest possible winning coalition
that is, she'll want to "bribe" exactly n other legislators with a bribe of p dollars for each of their districts, in order to get the n legislators (who are getting p each) to vote in favour of her proposal, and the other n legislators, who are getting nothing, to vote against
(of course she'll vote for her own proposal, so that "bribing" n other legislators will get her $n+1$ votes in favour of the proposal, which is the smallest number needed to pass a proposal)

a stationary equilibrium

suppose that each legislator would decide to allocate p dollars to each of the n districts of the legislators whose support she is seeking
that is, each legislator has the same strategy, if she would happen to be chosen (at some stage) to propose : offer p to n other districts, and allocate the remainder, $P \equiv r-n p$ to her own district
what is p, if (i) each legislator offered p will agree to vote for the proposal ; (ii) p is the smallest amount needed to get the legislator's support for the proposal?

if the bill is defeated..

if this period's proposal is defeated, then in the next period, each legislator
has a chance of $\frac{1}{2 n+1}$ of getting to make the next proposal
has a chance $\frac{n}{2 n+1}$ of being offered p to vote for the next proposal
has a chance $\frac{n}{2 n+1}$ of being left out of the coalition voting in favour of the next proposal

should she support the proposal?

in the current period, if one of the n legislators being offered p to vote for the proposal decides to vote against it, then the bill will be defeated
leaving her with an expected payoff of

$$
\frac{1}{2 n+1} P+\frac{n}{2 n+1} p+\frac{n}{2 n+1} 0=\frac{1}{2 n+1}(r-n p)+\frac{n}{2 n+1} p
$$

—or $\frac{r}{2 n+1}$ in the next period
i.e. a share $\frac{1}{2 n+1}$ of the available money r
if she discounts the future with discount rate β, then her expected payoff, if the current proposal is defeated, is

$$
\frac{\beta r}{2 n+1}
$$

if the proposal passes, she'll get p
so the minimal payoff p which will leave her willing to support the proposal is

$$
p^{*} \equiv \frac{\beta r}{2 n+1}
$$

leaving the person making the proposal with

$$
P^{*} \equiv r-n p^{*}=r\left(1-\frac{\beta n}{2 n+1}\right)
$$

