
Pairwise Majority Rule with Multi–dimensional

Choices

1 A Geometric Example

Although single–peaked preferences, or the single–crossing property, guarantee
that there will be no cycling, these properties are defined only when the set of
alternatives is “one–dimensional”. Persson and Tabellini mention a property
which will guarantee the existence of a Condorcet winner when the set of alter-
natives is multi–dimensional : the “intermediate preferences” property defined
in Definition 4 (pg. 25). But this property is a pretty special one — it requires
that people can somehow be described by a single–dimensional characteristic.
And even then, intermediate preferences is a pretty special requirement.

Here I want to illustrate a little buit the problems which may arise when
the set of policy alternatives is multi–dimensional, even when the preferences
of voters are quite well–behaved. What I am trying to show here is that the
natural extension of single–peakedness to more than one dimension won’t be
good enough.

To see this, suppose that there were two variables which voters had to choose.
For example, suppose X is spending on police services, and Y is the level of
spending on education. The cost of these services will be shared by all the
voters. (So a point (X,Y ), in which both X and Y were very high, would
represent a policy of spending a lot on both police services and on education,
and levying high taxes to pay for all this expenditure.)

Suppose that each voter ranks alternatives by how close the alternative is
to her preferred policy. For example, suppose that voter #1 had a preferred
policy of (700, 200) : this voter wants to spend a lot on police services but not
much on education. So (700, 200) is her most preferred policy. Other policies
she ranks by how far they are, in distance, from her preferred policy. A policy
(400, 500) is closer to (700, 200) than is (300, 600), so she prefers (400, 500) to
(300, 600). Her preferences could be represented by a utility function

U1(X,Y ) = 300000− (X − 700)2 − (Y − 200)2

since the distance of any policy (X,Y ) from her most preferred policy (700, 200)
can be measured as

d =
√

(X − 700)2 + (Y − 200)2
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So she is indifferent among all policies which are the same distance from (700, 200).
In two dimensions, her indifference curves are circles around the point (700, 200),
as illustrated in figure 5. Policies inside an “indifference circle” are preferred to
policies outside the circle.

2 Ranking Different Policies

The overall utility from different policies can be graphed in 3 dimensions, as in
figure 6. This figure shows that her preferences look sort of “single–peaked” :
her utility graph has a peak at (700, 200) ( at which U1 = 300000 ), and it falls
off in every direction. In the graph, (700, 200) is the only peak.

Her preferences also look single–peaked in any single dimension. Figure 7
shows her utility, as a function of X, holding Y constant ( at Y = 500 ). Her
utility reaches a peak at X = 700, and falls off in either direction, as we move
left or right from X = 700.

Imagine now that there are several people, with similar sorts of preferences,
differing only in their most preferred policy. For example, suppose that there
are 3 voters, with

U1(X,Y ) = 300000− (X − 700)2 − (Y − 200)2

U2(X,Y ) = 300000− (X − 300)2 − (Y − 300)2

U3(X,Y ) = 300000− (X − 200)2 + (Y − 800)2

so that person 1’s preferred policy is (700, 200), person 2’s is (300, 300) and
person 3’s is (200, 800). Each person’s 3-dimensional utility graph looks like
figure 6, except that the peak is at a different point for each person. Person 2
wants relatively low spending on both categories of expenditure, and person 3
wants a lot of educaton spending, and very little spending on police services.

So these preferences seem “just like” single–peaked preferences, in that mov-
ing further away from a preferred policy ( in any direction ) moves the person
to lower and lower levels of utility.

3 One Dimension at a Time

And if we voted ( by pairwise vote ) on these issues one dimension at a time,
there would be a winner in every dimension. For instance, consider voting about
the level of police expenditure X. Each person’s utility from a given level of X
is

U i(X,Y ) = 300000− (X −X∗
i )2 − (Y − Y ∗

i )2

where (X∗
i , Y

∗
i ) is the person’s preferred policy ( for example (300, 300) for

person #2 ). Differentiating,

∂U i

∂X
= −2(X −X∗

i )
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so that utility increases with X whenever X < X∗
i , reaches a peak at X = X∗

i ,
and then falls as X increases above X∗

i , just as shown in figure 7.
So, with these three people, if they all voted sincerely, and if we voted one

issue at a time, then there would be a Condorcet winner in each dimension :
X = 300 and Y = 300, in each case the median of the three people’s preferred
levels of X and Y .

4 Many Dimensions at Once

But restricting the vote to one dimension at a time is arbitrarily controlling the
agenda. What if a person could propose changing — simultaneously — both
X and Y ? That is, if (X,Y ) = (300, 300) is the status quo, what if someone
could introduce a new bill, proposing a totally new (X,Y ) combination, in which
X 6= 300 and in which Y 6= 300?

It turns out that (300, 300) can be defeated — even though X = 300 and
Y = 300 are winners if we can only make changes in a single dimension at a
time.

What if someone proposed (400, 400) as an alternative to (300, 300)? Per-
son 2 would obviously vote against the proposal, since (300, 300) is his most–
preferred policy. But person 1’s utility from (400, 400) is 170,000, which is higher
than the utility of 130,000 which she gets from (300, 300). And person 3’s util-
ity from (400, 400) is 100,000, which is higher than the utility of 40,000 which
she gets from (300, 300). In other words (400, 400) is closer than (300, 300) to
both person 1’s preferred policy (700, 200), and to person 3’s preferred policy
(200, 800).

So (300, 300) is not a Condorcet winner, since it gets defeated by (400, 400).
The policy (400, 400) is also not a winner. If it were the status quo, someone
could propose reducing X to 300 — holding Y constant at 400 —, and people
2 and 3 would vote for such a reduction.

In fact, there can be no winner in this example. It was just shown that
(300, 300) could be defeated by (400, 400). And any other policy, in which
X 6= 300 or in which Y 6= 300, could itself be defeated, either by changing X to
300, or by changing Y to 300.

The problem? Even though preferences look nice and convex, and even
though the graph of utility looks single–peaked if we slice it in any direction,
there is no way in which the alternatives can be lined up in a single dimension.
If choices are inherently multi–dimensional, and if there are no restrictions on
the agenda, then there will be no overall winning policy under pairwise majority
rule.

So one solution seems to be to vote on policies one issue at a time. The
committee system in legislatures seems to achieve this sort of effect : in the
committee on police services, only changes in X can be proposed, not changes
in Y .
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5 How to Slice Policies

But there may not be a natural way to divide the issue into “dimensions”. One
variable that has been changing in the background in all these examples is the
tax rate. Presumably increasing spending on police services, or on education,
will serve to increase taxes. That is why each of these voters does not want an
infinitely high level of spending on any category : taxes go up when spending
goes up.

As described so far, voters choose expenditure on different categories, with
the tax rate adjusting “invisibly” so as to pay for the expenditure. But that
is not the only way that legislatures work. Often, the total amount of taxes is
decided (perhaps by some committee). So voters may choose a level of total
expenditure E = X + Y in one committee. In this committee the choice is
one–dimensional : the level of expenditure (which equals the total taxes levied).
In some other committee, they then choose how the given level of expenditure
E is to be divided between police services and expenditures.

In other words, this last paragraph has proposed a new set of restrictions
on how policies can be changed. First, looking at expenditure one category at
a time, new proposals were restricted to changes in X, or changes in Y , but
not both. If someone proposed changing X, Y was not changed. Now some-
one (in the tax setting committee) can propose a change in total expenditure
E, but not in how the expenditure is divided between education and police
services. In the other committee, someone can propose changing how expendi-
ture is split between police services and education, but not the total level of
expenditure. That is, new proposals are now restricted to one of : “increase or
decrease expenditure on each category (police and education) by some percent
(but the percent has to be the same)”, or “increase (or decrease) the share of
the given total expenditure which goes to education (but don’t change the total
expenditure)”.

Any restriction on how much can be changed by a single proposal will have
the same effect : it makes each choice effectively one–dimensional, and gets
rid of the cycling. But how the restrictions get imposed does affect the policy
which will actually get chosen. When cycling is possible (without any restric-
tions on new legislation), the details of the rules of the legislature will wind up
determining the policy that wins.
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