(cf. Persson and Tabellini, 5.3)

key differences from models of chapter 3 :

(1) parties care about policies (not just about winning)

(2) parties can't commit to a policy (except for the policy they really want)

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

[for (1) without (2), see 5.1 in Persson and Tabellini]

Same Policy Model

public expenditure g financed by proportional income tax ; people differ in income ; preferences represented by

$$W^i(g)=c^i+H(g)$$

so preferences are single–peaked, and person *i*'s preferred policy is $g^*(y^i)$ such that

$$H'(g^*(y^i)) = \frac{y^i}{\bar{y}} \tag{1}$$

so that preferred $g^*(y^i)$ is a decreasing function of the person's income, and the median of the preferred policies is $g^*(y^m)$, where y^m is the median income

Entry Costs

now it costs $\epsilon > 0$ for a candidate to run for office (NOT refunded if the candidate wins)

so cost of running is $\epsilon,$ benefit of running is that you may influence the policy which is chosen

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

what if nobody wants to run? then some "default policy" \bar{g} gets chosen \bar{g} exogenous, and known to everyone

if nobody else runs in the election, \bar{g} gets chosen

but then if one person, of income y^i enters, she wins for sure (she's the only candidate), and gets to implement her most–favoured policy $g^*(y^i)$

so she'll choose to run (when no-one else is running) if

$$W^{i}[g^{*}(y^{i})] - \epsilon > W^{i}(\bar{g})$$
 (2)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

no-one chooses to enter if they can't influence the outcome (either by getting elected, or by siphoning off enough votes to change who else gets elected)

so if a person if income y^m chooses to run, then there is an equilibrium in which no–one else chooses to run

i.e. if condition (2) holds when $y^i = y^m$, then we have an equilibrium in which exactly one candidate chooses to run, a candidate of income y^m , who then implements her preferred policy $g^*(y^m)$

and no-one else chooses to enter, since no-one else can prevent this median voter from winning

Other One–Candidate Equilibria

what if only one person, of income y^i enters, with y^i close to (but a little smaller than) y^m ?

could anyone else enter and beat her? yes, a challenger of income y^m or a challenger whose income is closer to y^m than the first candidate's

but such an entrant (of income y^{j}) will gain

$$W^{j}[g^{*}(y^{j})] - W^{j}[g^{*}(y^{j})] - \epsilon$$
(3)

and (3) will be negative if y^i is close to y^i : the gain of slightly changing the policy is less than the cost of running and extremists, who would gain a lot by changing policy, can't win, since they're too far from the median to beat the original candidate *i*

Two-Candidate Equilibrium

now the candidates are not identical

not worth entering if the existing candidate's policy is close to yours

both candidates must have a chance of winning (no–one will enter if they're sure to lose)

so have candidates of income y^L and y^R entering, with

$$W^{m}[g^{*}(y^{L})] = W^{m}[g^{*}(y^{R})]$$
 (4)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

condition (4) guarantees that each candidate has a chance of winning

Not too Close Together

if y^L and y^R are "too" close together, then

$$0.5[W^{L}(g^{*}[y^{L}]) - W^{L}(g^{*}[y^{R}])] < \epsilon$$
(5)

under condition (5), candidate L doesn't want to enter : the gain from changing the policy (which he'll only achieve half the time) exceeds the cost of entering and if

$$0.5[W^{R}(g^{*}[y^{R}]) - W^{R}(g^{*}[y^{L}])] < \epsilon$$
(6)

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

then candidate R won't want to enter

if voters vote sincerely (as in Osborne and Slivinski) then g^L and g^R can't be too far apart

otherwise, a candidate of income y^m could enter and win and would want to do so, since $W^m[g^*(y^m)] - W^m[g^*(y^L)]$ and $W^m[g^*(y^m)] - W^m[g^*(y^R)]$ would both be pretty big

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ