Probabilistic Voting

(cf. Persson and Tabellini, 3.4)
policy space is still 1-dimensional - what level g of per capita expenditure to provide
still 2 parties, trying to maximize probability of getting elected, still committing to policies g^{A} and g^{B}
voters still differ in their income y^{J}

What's New : I

but now the parties differ in their popularity, measured by δ
$\delta>0$ means that (all) people like party B better ; the bigger is
δ, the bigger the popularity advantage for party B
a voter's utility when the public expenditure is

$$
W^{J}(g) \equiv(\bar{y}-g) \frac{y^{J}}{\bar{y}}+H(g)
$$

(as in the "minimum differentiation" model), but a person of income y^{J} will vote for party A over party B if and only if

$$
W^{J}\left(g^{A}\right)>W^{J}\left(g^{B}\right)+\delta
$$

this popularity measure δ is the same for everyone and it can vary
assumption : δ is a random variable, drawn from the uniform distribution over $\left[-\frac{1}{2 \psi}, \frac{1}{2 \psi}\right]$
so δ can take any value between $-\frac{1}{2 \psi}$ and $\frac{1}{2 \psi}$, and every value in this interval is equally likely
parties know what ψ is, but they don't know the actual value of δ when they make their policy choices
if δ is big and positive, only votes for party A are from people for whom $W^{J}\left(g^{A}\right)$ is a lot bigger than $W^{J}\left(g^{B}\right)$ (for whom $\left.W^{J}\left(g^{A}\right)-W^{J}\left(g^{B}\right)>\delta\right)$

What's New II

the popularity parameter δ is the same for everyone but there's a second new element, an "idiosyncratic" bias among voters (for one party or the other) which differs among people
so there are many voters of income y^{J}; they also vary in their personal preference $\sigma^{i J}$
voter iJ's overall preference for party B over party A is $\sigma^{i J}+\delta$ so she'll vote for party A only if

$$
W^{J}\left(g^{A}\right)>W^{J}\left(g^{B}\right)+\delta+\sigma^{i J}
$$

for each income level y^{J}, these biases $\sigma^{i J}$ are uniformly distributed over some interval

$$
\left[-\frac{1}{2 \phi^{J}}, \frac{1}{2 \phi^{j}}\right]
$$

parties know about these biases ; each party knows, for example, that $1 / 4$ of all the voters of income y^{J} have a bias in favour of party B of $\frac{1}{4 \phi^{\top}}$ or more

The Swing Voter

the voter of personal bias σ^{J} is defined as the voter (of income y^{J}) who is indifferent between the parties:

$$
\begin{equation*}
W^{J}\left(g^{A}\right)=W^{J}\left(g^{B}\right)+\sigma^{J}+\delta \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
\sigma^{J}=W^{J}\left(g^{A}\right)-W^{J}\left(g^{B}\right)-\delta \tag{2}
\end{equation*}
$$

everyone whose bias is less than σ^{J} votes for party A that's a fraction

$$
\begin{equation*}
\frac{1}{2}+\sigma^{J} \phi^{J} \tag{3}
\end{equation*}
$$

The Overall Vote

if a fraction α^{J} of the voters have an income y^{J} (and these voters vary in their biases), and party \boldsymbol{A} gets a share $\frac{1}{2}+\sigma^{J} \phi^{J}$ of those voters' votes, then equation (2) implies that party A's overall vote is

$$
\begin{equation*}
\frac{1}{2}+\sum_{J} \alpha^{J} \phi^{J}\left[W^{J}\left(g^{A}\right)-W^{J}\left(g^{B}\right)-\delta\right] \tag{4}
\end{equation*}
$$

party A wins if this share is greater than $\frac{1}{2}$, which will happen if

$$
\begin{equation*}
\sum_{J} \alpha^{J} \phi^{J}\left[W^{J}\left(g^{A}\right)-W^{J}\left(g^{B}\right)\right]>\sum_{J} \alpha^{J} \phi^{J} \delta \tag{5}
\end{equation*}
$$

Probability of Winning

the probability that the popularity parameter δ is less than x is

$$
\begin{equation*}
\operatorname{Prob}(\delta<x)=\frac{1}{2}+\psi x \tag{6}
\end{equation*}
$$

so that equation (5) says that party A's probability of winning is

$$
\begin{equation*}
\frac{1}{2}+\frac{\psi}{\phi}\left(\sum_{J} \alpha^{J} \phi^{J}\left[W^{J}\left(g^{A}\right)-W^{J}\left(g^{B}\right)\right]\right) \tag{7}
\end{equation*}
$$

where ϕ is the average value of the ϕ^{J} 's :

$$
\phi \equiv \sum^{J} \alpha^{J} \phi^{J}
$$

Part A's Platform

party A wants to maximize its chance of winning; so it should choose a policy g^{A} to maximize expression (7)
taking as given the policy g^{B} chosen by its rival so g^{A} is chosen so that

$$
\begin{equation*}
\sum_{J} \alpha^{J} \phi^{J} \frac{d W^{J}}{d g^{A}}=0 \tag{8}
\end{equation*}
$$

What About Party B?

party B wants to maximize its own chance of winning, given party A 's policy g^{B} so that it chooses g^{B} so as to maximize

$$
\begin{equation*}
\frac{1}{2}+\frac{\psi}{\phi}\left(\sum_{J} \alpha^{J} \phi^{J}\left[W^{J}\left(g^{B}\right)-W^{J}\left(g^{A}\right)\right]\right) \tag{9}
\end{equation*}
$$

so that

$$
\begin{equation*}
\sum_{J} \alpha^{J} \phi^{J} \frac{d W^{J}}{d g^{B}}=0 \tag{10}
\end{equation*}
$$

as in the simple (no uncertainty) Hotelling-Black-Downs model, parties here choose the same policies in equilibrium

Equilibrium Policy

the policy each party chooses - the solution to (8) [or (10)]
maximizes a weighted sum of different groups' interests
this solution is the g which maximizes

$$
\begin{equation*}
\sum_{J} \alpha_{J} \phi^{J} W^{J}(g) \tag{11}
\end{equation*}
$$

conclusion : more weight on groups with high ϕ^{j} - which means "less-spread-out" distribution of the indiosyncratic characteristic $\sigma^{i J}$
high ϕ^{J} means more responsive to small changes in policy, which means politicians pay more attention to such groups

