Probabilistic Voting

(cf. Persson and Tabellini, 3.4)

policy space is still 1-dimensional — what level g of per capita expenditure to provide

still 2 parties, trying to maximize probability of getting elected, still committing to policies q^A and q^B

voters still differ in their income y^J

What's New: I

but now the parties differ in their popularity, measured by δ

 $\delta > 0$ means that (all) people like party B better; the bigger is δ , the bigger the popularity advantage for party B a voter's utility when the public expenditure is

$$W^J(g) \equiv (\bar{y}-g)rac{y^J}{\bar{y}} + H(g)$$

(as in the "minimum differentiation" model), but a person of income y^J will vote for party A over party B if and only if

$$W^{J}(g^{A}) > W^{J}(g^{B}) + \delta$$

this popularity measure δ is the same for everyone and it can vary

assumption : δ is a random variable, drawn from the uniform distribution over $[-\frac{1}{2\psi},\frac{1}{2\psi}]$

so δ can take any value between $-\frac{1}{2\psi}$ and $\frac{1}{2\psi}$, and every value in this interval is equally likely

parties know what ψ is, but they don't know the actual value of δ when they make their policy choices

if δ is big and positive, only votes for party A are from people for whom $W^J(g^A)$ is a lot bigger than $W^J(g^B)$ (for whom $W^J(g^A)-W^J(g^B)>\delta$)

What's New II

the popularity parameter δ is the same for everyone

but there's a second new element, an "idiosyncratic" bias among voters (for one party or the other) which differs among people

so there are many voters of income \mathbf{y}^J ; they also vary in their personal preference σ^{iJ}

voter *iJ*'s overall preference for party *B* over party *A* is $\sigma^{iJ}+\delta$ so she'll vote for party *A* only if

$$W^{J}(g^{A}) > W^{J}(g^{B}) + \delta + \sigma^{iJ}$$

for each income level y^J , these biases σ^{iJ} are uniformly distributed over some interval

$$[-\frac{1}{2\phi^J},\frac{1}{2\phi^J}]$$

parties know about these biases; each party knows, for example, that 1/4 of all the voters of income y^J have a bias in favour of party B of $\frac{1}{4\phi^J}$ or more

The Swing Voter

the voter of personal bias σ^J is defined as the voter (of income y^J) who is indifferent between the parties :

$$W^{J}(g^{A}) = W^{J}(g^{B}) + \sigma^{J} + \delta \tag{1}$$

or

$$\sigma^{J} = W^{J}(g^{A}) - W^{J}(g^{B}) - \delta \tag{2}$$

everyone whose bias is less than σ^J votes for party A that's a fraction

$$\frac{1}{2} + \sigma^J \phi^J \tag{3}$$

The Overall Vote

if a fraction α^J of the voters have an income y^J (and these voters vary in their biases), and party A gets a share $\frac{1}{2}+\sigma^J\phi^J$ of those voters' votes, then equation (2) implies that party A's overall vote is

$$\frac{1}{2} + \sum_{J} \alpha^{J} \phi^{J} [W^{J}(g^{A}) - W^{J}(g^{B}) - \delta]$$
 (4)

party A wins if this share is greater than $\frac{1}{2}$, which will happen if

$$\sum_{J} \alpha^{J} \phi^{J} [W^{J}(g^{A}) - W^{J}(g^{B})] > \sum_{J} \alpha^{J} \phi^{J} \delta$$
 (5)

Probability of Winning

the probability that the popularity parameter δ is less than x is

$$Prob(\delta < x) = \frac{1}{2} + \psi x \tag{6}$$

so that equation (5) says that party A's probability of winning is

$$\frac{1}{2} + \frac{\psi}{\phi} \left(\sum_{J} \alpha^{J} \phi^{J} [W^{J}(g^{A}) - W^{J}(g^{B})] \right) \tag{7}$$

where ϕ is the average value of the ϕ^{J} 's :

$$\phi \equiv \sum^J \alpha^J \phi^J$$

Part A's Platform

party A wants to maximize its chance of winning; so it should choose a policy g^A to maximize expression (7) taking as given the policy g^B chosen by its rival so g^A is chosen so that

$$\sum_{J} \alpha^{J} \phi^{J} \frac{dW^{J}}{dg^{A}} = 0 \tag{8}$$

What About Party *B*?

party B wants to maximize its own chance of winning, given party A's policy g^B so that it chooses g^B so as to maximize

$$\frac{1}{2} + \frac{\psi}{\phi} \left(\sum_{J} \alpha^{J} \phi^{J} [W^{J}(g^{B}) - W^{J}(g^{A})] \right) \tag{9}$$

so that

$$\sum_{J} \alpha^{J} \phi^{J} \frac{dW^{J}}{dg^{B}} = 0 \tag{10}$$

as in the simple (no uncertainty) Hotelling-Black-Downs model, parties here choose the same policies in equilibrium

Equilibrium Policy

the policy each party chooses — the solution to (8) [or (10)] maximizes a weighted sum of different groups' interests this solution is the g which maximizes

$$\sum_{J} \alpha_{J} \phi^{J} W^{J}(g) \tag{11}$$

conclusion : more weight on groups with high ϕ^j — which means "less–spread–out" distribution of the indiosyncratic characteristic σ^{iJ}

high ϕ^J means more responsive to small changes in policy, which means politicians pay more attention to such groups