due: Wednesday November 9 before class
Do all 5 questions. Each counts 20\%.

1. What are the market price, and aggregate quantity sold, in long-run equilibrium in a perfectly competitive market for which the demand function has the equation

$$
Q=\frac{6000000}{p}
$$

(where Q is aggregate quantity demanded, and p the price), if there is free entry by identical firms to the industry, each of which has the long-run total cost function

$$
T C=9000 q-600 q^{2}+15 q^{3}
$$

where q is the quantity produced by the firm?
2. Suppose that firms in a competitive industry were not identical. Instead, there are 10 firms each with a cost function $T C(q)=q^{2} / 2,10$ more firms each with a total cost function $T C(q)=q+q^{2} / 2,10$ more firms each with a total cost function of $T C(q)=2 q+q^{2} / 2$, another 10 firms each with cost function $T C(q)=3 q+q^{2} / 2$, and so on. Firms are free to enter and exit the industry. What is the equation of the long-run supply curve for the industry?
3. How would the output of a single-price monopoly vary with its fixed cost F, if it had a cost function $C(q)=F+c q$, and faced an inverse demand function $p=a-b q$ (where a, b and c are positive constants, with $a>c)$?
4. What is the Cournot equilibrium, if there are $n>1$ firms in the industry, each producing a homogeneous product, each with identical total cost function $T C(q)=c q$ where $c>0$ is some constant, if the market demand function is

$$
Q^{D}=p^{-a}
$$

where p is the price of the good, Q^{D} the total quantity demanded, and $a>1 / n$?
5. Solve for the equilibrium of a Cournot duopoly, if firms produce a homogeneous output, the demand for which obeys the function $p=a-Q$ where p is the price of the good, $Q=q_{1}+q_{2}$ is the total quantity sold, and $a>0$, if firm \#1 could produce the good for nothing, and if firm \#2 had the total cost function

$$
T C\left(q_{2}\right)=c q_{2}
$$

where $a>c>0$.
How does the profit of firm 1 vary with its rival's marginal cost c of production?

