due : Wednesday September 26 before class

Do all 5 questions. Each counts 20\%.

1. Are the preferences described below strictly monotonic? Convex? Explain briefly.

There are two goods in the person's consumption bundle. In comparing any 2 bundles, $x=$ $\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$, she gives points for a bundle which has more of a good. If $x_{1}>y_{1}$, then bundle x gets 1 point; if $y_{1}>x_{1}$ then bundle y gets 1 point ; if $x_{1}=y_{1}$, then each bundle gets half a point. If $x_{2}>y_{2}$, then bundle x gets 2 more points ; if $y_{2}>x_{2}$, then bundle y gets 2 more points ; if $x_{2}=y_{2}$, then each bundle gets 1 point.
(So, for example, if $x=(3,2)$ and $y=(4,1)$ then x would get 2 points and y would get 1 point.)

She finds bundle x at least as good as bundle y if and only if x gets at least as many points as y.
2. Are the preferences represented by the utility function below strictly monotonic? Convex? Explain briefly.

$$
\left.u\left(x_{1}, x_{2}, x_{3}\right)\right)=10-\frac{1}{x_{1} x_{2} x_{3}+1}
$$

3. Calculate a person's Marshallian demand functions, if her preferences can be represented by the utility function

$$
u\left(x_{1}, x_{2}\right)=\min \left(\ln x_{1}+2 \ln x_{2}, 2 \ln x_{1}+\ln x_{2}\right)
$$

(where "min" means "the minimum of").
4. Calculate a person's Marshallian demand functions, her indirect utility function, her Hicksian demand functions, and her expenditure function, if her direct utility function is

$$
u\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+\ln x_{2}+2 \sqrt{x_{3}}
$$

5. Derive the Slutsky matrix (that is, the 2-by-2 matrix of derivatives of Hicksian demands with respect to prices) for a consumer whose preferences can be represented by the direct utility function

$$
u\left(x_{1}, x_{2}\right)=x_{1}+\ln x_{2}
$$

