due : Wednesday November 21 before class

Do all 5 questions. Each counts 20%.

1. What does the contract curve look like for a 2 -person, 2 -good exchange economy, with a total endowment of 10 units of good 1 and 30 units of good 2 , if the preferences of the two people could be represented by the utility functions

$$
\begin{gathered}
u^{1}\left(x_{1}^{1}, x_{2}^{1}\right)=\ln x_{1}^{1}+\ln x_{2}^{1} \\
u^{2}\left(x_{1}^{2}, x_{2}^{2}\right)=112-\frac{1}{\left(x_{1}^{2}\right)^{2}}+\ln x_{2}^{2}
\end{gathered}
$$

where x_{j}^{i} is person i 's consumption of good j ?
2. What are all the allocations in the core of a 3 -person, 2-good economy, in which each person's preferences can be represented by the utility function

$$
u^{i}\left(x_{1}^{i}, x_{2}^{i}\right)=x_{1}^{i}+2 \sqrt{x_{2}^{i}}
$$

where x_{j}^{i} is person i 's consumption of good j, and where the endowments e^{i} of the three people are $e^{1}=(4,0), e^{2}=(0,4), e^{3}=(2,2)$?
3. In the economy described in question $\# 1$ above, suppose that person 2 's endowment of the two goods is $\mathbf{e}^{2}=(\alpha, 8)$. Suppose as well that person 1 chooses to consume 8 units of good 1 in the resulting competitive equilibrium.

What does α equal?
4. Calculate the competitive equilibrium for the 3 -person, 2 -good economy described in question $\# 2$.
5. Find all the pure-strategy Nash equilibria in the following strategic-form two-person game.

	a	b	c	d	e	f	g
A	$(0,0)$	$(0,8)$	$(0,15)$	$(0,17.7)$	$(0,20)$	$(0,23)$	$(0,24)$
B	$(8,0)$	$(4,4)$	$(2,9)$	$(1,10.7)$	$(0,12)$	$(-2,13)$	$(-4,12)$
C	$(15,0)$	$(9,2)$	$(6,6)$	$(4.5,7.2)$	$(3,8)$	$(0,8)$	$(-3,6)$
D	$(17.7,0)$	$(10.7,1)$	$(7.2,4.5)$	$(5.5,5.5)$	$(3.7,6)$	$(0.2,5.5)$	$(-3.2,3)$
E	$(20,0)$	$(12,0)$	$(8,3)$	$(6,3.7)$	$(4,4)$	$(0,3)$	$(-4,0)$
F	$(23,0)$	$(13,-2)$	$(8,0)$	$(5.5,0.2)$	$(3,0)$	$(-2,-2)$	$(-7,-6)$
G	$(24,0)$	$(12,-4)$	$(6,-3)$	$(3,-3.2)$	$(0,-4)$	$(-6,-7)$	$(-12,-12)$

