GS/ECON 5010 section B Assignment $3 \quad$ F2011

due: Wednesday November 9 2:30 pm
Do all 5 questions. Each counts 20%.

1. What are the profit function, the supply function, and the (unconditional) input demand functions for a perfectly competitive firm with a production function

$$
f\left(x_{1}, x_{2}\right)=\sqrt{\frac{x_{1} x_{2}}{x_{1}+1}} \quad ?
$$

2. What is the lowest price p for which a firm in perfect competition will be willing to produce a positive level of output, if the firm's cost function has the equation

$$
C\left(w_{1}, w_{2}, y\right)=\left(\sqrt{w_{1}}+\sqrt{w_{2}}\right)^{2} \frac{y}{y+1}+w_{1} y^{2} \quad ?
$$

3. Suppose that a market consists of an equal number of two types of people. Type-1 people's preferences can be represented by the utility function

$$
U^{1}(x, z)=x+z-\frac{1}{2} z^{2}
$$

and type -2 people's preferences can be represented by the utility function

$$
U^{2}(x, z)=x+V z-\frac{1}{2} z^{2}
$$

where x and z are consumption of 2 different goods, and where $V>1$. Good x is produced by a perfectly competitive industry, at a price of 1 .

Good z is produced by a monopoly, which has zero production costs.
What price p should the monopoly charge so as to maximize its profits, if it must charge the same price p to all customers?
4. Suppose now that the monopoly in question \#3 can charge a two-part tariff. That is, it requires all customers to pay a flat fee F in order to buy any of the good at all, along with a price p per unit.
[So customers have a choice : they either pay the fee F, and are able to buy as much or as little as they want of good z at a price of p per unit. Or they can decide not to pay the fee F, in which case they cannot purchase any of good z.]

The monopoly must charge the same fee F to all customers. And it must charge the same unit price p to all customers. If all other data are exactly as in question $\# 3$ above, what fee F and what unit price p should the monopoly charge?
5. In a Cournot oligopoly, in which n identical firms each have a constant marginal cost of production c, and in which market demand is defined by the inverse demand function

$$
p=A-\frac{1}{\beta}\left(\sum_{i=1}^{n} x_{i}\right)^{\beta}
$$

$(\beta \neq 0)$ for what values of β will it be true that the total industry output, in a symmetric Cournot equilibrium, increases with the number n of firms?

