GS/ECON 5010 section "B", Assignment 1 F2012

due: Wednesday October 3 before class
Do all 5 questions. Each counts 20%.

1. Are the preferences described below transitive? Continuous? Strictly monotonic? Explain briefly.

The person consumes 3 goods, white shirts (w), blue shirts (b), and green shirts (g). A bundle $A=(w, b, g)$ will be ranked as at least as good as bundle $A^{\prime}=\left(w^{\prime}, b^{\prime}, g^{\prime}\right)$ if any of the following conditions holds :
(i) bundle A contains more shirts than bundle A^{\prime} (i.e. $w+b+g>w^{\prime}+b^{\prime}+g^{\prime}$); or
(ii) bundles A and A^{\prime} contain the same number of shirts, but bundle A contains more white shirts $\left(w+b+g=w^{\prime}+b^{\prime}+g^{\prime}\right.$ and $\left.w>w^{\prime}\right)$; or
(iii) bundles A and A^{\prime} contain the same number of shirts and bundles A and A^{\prime} contain the same number of white shirts and bundle A contains at least as many blue shirts $(w+b+g=$ $w^{\prime}+b^{\prime}+g^{\prime}$ and $w=w^{\prime}$ and $\left.b \geq b^{\prime}\right)$

If neither (i) nor (ii) nor (iii) is true, then bundle A is not considered at least as good as bundle A^{\prime}.
2. Are the preferences represented by the utility function below strictly monotonic? Convex? Explain briefly.

$$
U\left(x_{1}, x_{2}, x_{3}\right)=\sqrt{\left(x_{1}+x_{2}\right)^{2}+x_{3}}
$$

3. Calculate a person's Marshallian demand functions, if her preferences can be represented by the utility function

$$
u\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+x_{2}+\ln \left(x_{3}\right)
$$

4. Calculate a person's Marshallian demand functions, if her preferences can be represented by the utility function (where the expression " $\exp (a)$ " means e^{a})

$$
u\left(x_{1}, x_{2}\right)=1-\exp \left(-x_{1}\right)-\exp \left(-x_{2}\right)
$$

5. Calculate the Hicksian demand functions, and the expenditure function, for a consumer whose preferences can be represented by the utility function from the previous question,

$$
u\left(x_{1}, x_{2}\right)=1-\exp \left(-x_{1}\right)-\exp \left(-x_{2}\right)
$$

