Q1. Are the preferences described below transitive? Continuous? Strictly monotonic? Explain briefly.

The person consumes 3 goods, white shirts (w), blue shirts (b), and green shirts (g). A bundle $A=(w, b, g)$ will be ranked as at least as good as bundle $A^{\prime}=\left(w^{\prime}, b^{\prime}, g^{\prime}\right)$ if any of the following conditions holds :
(i) bundle A contains more shirts than bundle A^{\prime} (i.e. $w+b+g>w^{\prime}+b^{\prime}+g^{\prime}$); or
(ii) bundles A and A^{\prime} contain the same number of shirts, but bundle A contains more white shirts $\left(w+b+g=w^{\prime}+b^{\prime}+g^{\prime}\right.$ and $\left.w>w^{\prime}\right)$; or
(iii) bundles A and A^{\prime} contain the same number of shirts and bundles A and A^{\prime} contain the same number of white shirts and bundle A contains at least as many blue shirts $(w+b+g=$ $w^{\prime}+b^{\prime}+g^{\prime}$ and $w=w^{\prime}$ and $\left.b \geq b^{\prime}\right)$

If neither (i) nor (ii) nor (iii) is true, then bundle A is not considered at least as good as bundle A^{\prime}.
$A 1$. These preferences are transitive : if bundle A has at least as many shirts as bundle A^{\prime}, and bundle A^{\prime} has at least as many shirts as bundle $A^{\prime \prime}$, then bundle A must have at least as many shirts as bundle $A^{\prime \prime}$. Similarly, if bundle A has at least as many white shirts as bundle A^{\prime}, and bundle A^{\prime} has at least as many white shirts as bundle $A^{\prime \prime}$, then bundle A must have at least as many white shirts as bundle $A^{\prime \prime}$. And if bundle A has at least as many blue shirts as bundle A^{\prime}, and bundle A^{\prime} has at least as many blue shirts as bundle $A^{\prime \prime}$, then bundle A must have at least as many blue shirts as bundle $A^{\prime \prime}$.

The preferences are strictly monotonic: if $w \geq w^{\prime}$ and $b \geq b^{\prime}$ and $g \geq g^{\prime}$, parts (i), (ii) and (iii) of the definition imply that $A=(w, b, g)$ must be ranked as at least as good as $A^{\prime}=\left(w^{\prime}, b^{\prime}, g^{\prime}\right)$. If $w>w^{\prime}$ and $b>b^{\prime}$ and $g>g^{\prime}$, then $w+b+g>w^{\prime}+b^{\prime}+g^{\prime}$ so that part i of the definition implies that (w, b, g) be strictly preferred to $\left(w^{\prime}, b^{\prime}, g^{\prime}\right)$.

But the preferences are not continuous. Take the bundle $A=(10,0,0)$. For any $\epsilon>0$, the bundle $B(\epsilon) \equiv(5,5+\epsilon, 0)$ is strictly preferred to A (from part i of the definition), so that $B(\epsilon)$ is in the set $\succeq(A)$ of bundles which are at least as good as A. if this set $\succeq(A)$ is closed, then if we take the limit $B(0)$ of a sequence of bundles $B(\epsilon)$ in $\succeq(A)$, that limit must be in $\succeq(A)$: that's the definition of a closed set.

But that's not true here : the bundles $(5,5.1,0),(5,5.01,0),(5,5.001,0)$ and so on are all in $\succeq(A)$, from part i of the definition. But the bundle $B(0)=(5,5,0)$ is not in $\succeq(A)$, since $B(0)$ has the same number of shirts as A, but fewer white shirts.
[Another way of seeing that preferences are not continuous: What other bundles are on the indifference curve through some allocation, say $A=(3,3,4)$? If $B=(w, b, g)$ is on the same indifference curve as A, part (i) of the definition says that it must be true that $w+b+g=10$; part (ii) says that it must be true that $w=3$, and part (iii) says that $b=3$. So the only
consumption bundle on the indifference curve through $A=(3,3,4)$ is A itself. So that means that there must be points on the boundary of the "at least as good as" set $\succeq(A)$ which are not actually in $\succeq(A)$. Here these are points such as $(3,2,5)$ (or any (w, b, g) with $w+b+g=10$ and $g>4)$. So $\succeq(A)$ is not closed, so that preferences are not continuous.]
$Q 2$. Are the preferences represented by the utility function below strictly monotonic? Convex? Explain briefly.

$$
U\left(x_{1}, x_{2}, x_{3}\right)=\sqrt{\left(x_{1}+x_{2}\right)^{2}+x_{3}}
$$

A2. These preferences are strictly monotonic, since the partial derivatives of $u()$ are all positive :

$$
\begin{gathered}
\frac{\partial u}{\partial x_{1}}=\frac{\partial u}{\partial x_{2}}=\left(x_{1}+x_{2}\right)\left[\left(x_{1}+x_{2}\right)^{2}+x_{3}\right]^{-0.5}>0 \\
\frac{\partial u}{\partial x_{3}}=0.5\left[\left(x_{1}+x_{2}\right)^{2}+x_{3}\right]^{-0.5}>0
\end{gathered}
$$

But the preferences are not convex. Take the two bundles $\mathbf{x}=(2,2,0)$ and $\mathbf{z}=(0,0,16)$. Then

$$
u(\mathbf{x})=u(\mathbf{z})=4
$$

Now take a convex combination of \mathbf{x} and $\mathbf{z}: \mathbf{y}=(0.5) \mathbf{x}+(0.5) \mathbf{z}=(1,1,8)$ Then $u(\mathbf{y})=\sqrt{12} \approx$ 3.464 so that the person is indifferent between \mathbf{x} and \mathbf{z}, but prefers either of those bundles (strictly) to a convex combination of the 2 bundles.
[Another way of seeing that the preferneces are not convex : Since preferences are strictly monotonic, every 2-dimensional indifference curve must exhibit a diminishing marginal rate of transformation, if preferences are convex. That is, a necessary condition for convexity, when preferences are strictly monotonic, is that u_{i} / u_{j} falls as x_{i} increases and x_{j} falls, holding constant every other x_{k}, and holding $u(\mathbf{x})$ constant.

So fix x_{1}, and look at an indifference curve between x_{2} and x_{3}. These are combinations (x_{2}, x_{3}) such that $x_{2}^{2}+x_{3}$ are constant. So the indifference curve has the equation $x_{3}=C-x_{2}^{2}$ where C is a constan. That curve has the wrong shape : take $C=20$, and points such as $(0,20),(1,19)$, $(2,16),(3,11),(4,4)$ are on the curve, (here the first number is x_{2} and the second is x_{3}), so that the curve gets steeper as we move down and to the right.]

Q3. Calculate a person's Marshallian demand functions, if her preferences can be represented by the utility function

$$
u\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+x_{2}+\ln \left(x_{3}\right)
$$

A3. Notice first that this person views goods 1 and 2 as perfect substitutes for each other. She will only consume a positive amount of good 1 if $p_{1} \leq p_{2}$.
[Proof : suppose that $p_{1}>p_{2}$, and that $x_{1}>0$. Then reducing x_{1} by a small amount (say 0.1), and increasing x_{2} by that same amount will keep her utility level the same, but save her some money $\left((0.1)\left(p_{1}-p_{2}\right)\right.$ in the example.) She can use this extra money to buy a little more of good 3 , and raise her utility. So the original consumption bundle, with $x_{1}>0$, cannot be her most-preferred bundle in the budget set if $p_{1}>p_{2}$.]

Similarly, she will only choose $x_{2}>0$ if $p_{1} \geq p_{2}$.
So, suppose that $p_{1}>p_{2}$. The person's problem now is to choose $\left(x_{2}, x_{3}\right)$ so as to maximize $x_{2}+\ln x_{2}$ subject to the budget constraint $p_{2} x_{2}+p_{3} x_{3}=y$, since she will not want to buy any of good 1 .

The first-order conditions for this maximization are

$$
\begin{align*}
1 & =\lambda p_{2} \tag{3-1}\\
\frac{1}{x_{3}} & =\lambda p_{3} \tag{3-2}
\end{align*}
$$

where λ is the Lagrange multiplier on the budget constraint $p_{2} x_{2}+p_{3} x_{3}$. Substituting for λ from $(3-1)$ into $(3-2)$ yields the demand function for good 3 ,

$$
\begin{equation*}
x_{3}^{M}(\mathbf{p}, y)=\frac{p_{2}}{p_{3}} \tag{3-3}
\end{equation*}
$$

and substitution from $(3-3)$ into the budget constraint yields the demand function for good 2 ,

$$
\begin{equation*}
x_{2}^{M}(\mathbf{p}, y)=\frac{y}{p_{2}}-1 \tag{3-4}
\end{equation*}
$$

[If $y<p_{2}<p_{1}$, then she is at a corner solution, in which $x_{1}^{M}=x_{2}^{M}=0$ and in which $x_{3}^{M}(\mathbf{p}, y)=$ $\frac{y}{p_{3}}$.]

On the other hand, if $p_{2}>p_{1}$, then she won't buy any of good 2 , so that her demand functions are $x_{3}^{M}(\mathbf{p}, y)=\frac{p_{1}}{p_{3}}$ and $x_{1}^{M}=\frac{y}{p_{1}}-1$ [provided that $p_{1}<y$ so that she is not at a corner solution].

If it happened that $p_{1}=p_{2}=p$ then she would not care how she divided her spending between goods 1 and 2 , so long as $x_{3}=\frac{p}{p_{3}}$, and $x_{1}+x_{2}=\frac{y}{p}-1[$ if $p<y$].

Q4. Calculate a person's Marshallian demand functions, if her preferences can be represented by the utility function (where the expression "exp (a) " means e^{a})

$$
u\left(x_{1}, x_{2}\right)=1-\exp \left(-x_{1}\right)-\exp \left(-x_{2}\right)
$$

A4. The key rule from calculus here is the derivative of the exponential function :

$$
\frac{d}{d x}\left(e^{a}\right)=e^{a}
$$

That means that the partial derivatives of the utility function with respect to x_{1} and x_{2} are

$$
\begin{aligned}
& u_{1}=\exp \left(-x_{1}\right) \\
& u_{2}=\exp \left(-x_{2}\right)
\end{aligned}
$$

so that the marginal rate of substitution between the goods is

$$
\begin{equation*}
M R S=\frac{u_{1}}{u_{2}}=\exp \left(x_{2}-x_{1}\right) \tag{4-1}
\end{equation*}
$$

(where I have used the fact that $e^{a-b}=\frac{e^{a}}{e^{b}}$).
The first-order condition for utility maximization by the consumer is $M R S=p_{1} / p_{2}$, which here (using $(4-1)$) can be written

$$
\begin{equation*}
\exp \left(x_{2}-x_{1}\right)=\frac{p_{1}}{p_{2}} \tag{4-2}
\end{equation*}
$$

or

$$
\begin{equation*}
\exp \left(x_{2}\right)=\frac{p_{1}}{p_{2}} \exp \left(x_{1}\right) \tag{4-3}
\end{equation*}
$$

Taking natural logarithms of both sides of $(4-3)$, and using the facts that $\ln \left(e^{a}\right)=a$ and that $\ln a b=\ln a+\ln b$,

$$
\begin{equation*}
x_{2}=\ln \frac{p_{1}}{p_{2}}+x_{1} \tag{4-4}
\end{equation*}
$$

Substituting for x_{2} from (4-4) into the budget constraint $p_{1} x_{1}+p_{2} x_{2}=y$, yields the Marshallian demand function for good 1 ,

$$
\begin{equation*}
x_{1}^{M}\left(p_{1}, p_{2}, y\right)=\frac{y}{p_{1}+p_{2}}+\frac{p_{2}}{p_{1}+p_{2}} \ln \frac{p_{2}}{p_{1}} \tag{4-5}
\end{equation*}
$$

and subsituting from $(4-5)$ into $(4-4)$ gives the Marshallian demand function for good 2,

$$
\begin{equation*}
x_{2}^{M}\left(p_{1}, p_{2}, y\right)=\frac{y}{p_{1}+p_{2}}+\frac{p_{1}}{p_{1}+p_{2}} \ln \frac{p_{1}}{p_{2}} \tag{4-6}
\end{equation*}
$$

[Expressions $(4-5)$ and $(4-6)$ are valid only when they are both non-negative. If $p_{1}>p_{2}$, and if income were so low that

$$
y<p_{2} \ln \frac{p_{1}}{p_{2}}
$$

then we would have a corner solution in which $x_{1}=0$ and $x_{2}=y / p_{2}$. Similarly, if $p_{2}>p_{1}$ and income were so high that

$$
y<p_{1} \ln \frac{p_{2}}{p_{1}}
$$

then we would have a corner solution in which $x_{1}=y / p_{1}$ and $x_{2}=0$.]
5. Calculate the Hicksian demand functions, and the expenditure function, for a consumer whose preferences can be represented by the utility function from the previous question,

$$
u\left(x_{1}, x_{2}\right)=1-\exp \left(-x_{1}\right)-\exp \left(-x_{2}\right)
$$

A5. Expenditure minimization also has the first-order condition $M R S=p_{1} / p_{2}$, so that equation $(4-3)$ also applies to a consumer minimizing the cost of achieving a given level of utility.

Plugging $(4-3)$ into the definition of the consumer's utility,

$$
\begin{equation*}
u=1-\exp \left(-x_{1}\right)-\frac{p_{2}}{p_{1}} \exp \left(-x_{1}\right) \tag{5-1}
\end{equation*}
$$

so that

$$
\begin{equation*}
\frac{p_{1}+p_{2}}{p_{1}} \exp \left(-x_{1}\right)=1-u \tag{5-2}
\end{equation*}
$$

or

$$
\begin{equation*}
\exp \left(x_{1}\right)=\frac{1}{1-u} \frac{p_{1}+p_{2}}{p_{1}} \tag{5-3}
\end{equation*}
$$

Taking natural logarithms of both sides of equation $(5-3)$ yields the Hicksian demand function for good 1 :

$$
\begin{equation*}
x_{1}^{H}\left(p_{1}, p_{2}, u\right)=\ln \left(p_{1}+p_{2}\right)-\ln p_{1}-\ln (1-u) \tag{5-4}
\end{equation*}
$$

and substituting from $(5-3)$ into $(4-4)$ gives the Hicksian demand function for good 2 ,

$$
\begin{equation*}
x_{2}^{H}\left(p_{1}, p_{2}, u\right)=\ln \left(p_{1}+p_{2}\right)-\ln p_{2}-\ln (1-u) \tag{5-5}
\end{equation*}
$$

The expenditure function, $E\left(p_{1}, p_{2}, u\right)$ is the cost of the Hicksian demands, $p_{1} x_{1}^{H}\left(p_{1}, p_{2}, u\right)+$ $p_{2} x_{2}^{H}\left(p_{1}, p_{2}, u\right)$. From $(5-4)$ and $(5-5)$,

$$
\begin{equation*}
E\left(p_{1}, p_{2}, u\right)=\left(p_{1}+p_{2}\right) \ln \left(p_{1}+p_{2}\right)-p_{1} \ln p_{1}-p_{2} \ln p_{2}-\left(p_{1}+p_{2}\right) \ln (1-u) \tag{5-6}
\end{equation*}
$$

From equation $(5-6)$, we can also find the indirect utility function. Equation $(5-6)$ can be written

$$
\begin{equation*}
y=\left(p_{1}+p_{2}\right) \ln \left(p_{1}+p_{2}\right)-p_{1} \ln p_{1}-p_{2} \ln p_{2}-\left(p_{1}+p_{2}\right) \ln \left(1-v\left(p_{1}, p_{2}, y\right)\right. \tag{5-6}
\end{equation*}
$$

so that

$$
\begin{equation*}
1-v\left(p_{1}, p_{2}, y\right)=\left(p_{1}+p_{2}\right)=p_{1}^{-\frac{p_{1}}{p_{1}+p_{2}}} p_{2}^{-\frac{p_{2}}{p_{1}+p_{2}}} e^{-\frac{y}{p_{1}+p_{2}}} \tag{5-7}
\end{equation*}
$$

or

$$
\begin{equation*}
v\left(p_{1}, p_{2}, y\right)=1-\left(p_{1}+p_{2}\right) p_{1}^{-\frac{p_{1}}{p_{1}+p_{2}}} p_{2}^{-\frac{p_{2}}{p_{1}+p_{2}}} e^{-\frac{y}{p_{1}+p_{2}}} \tag{5-8}
\end{equation*}
$$

The indirect utility function can also be obtained from substitution of the Marshallian demand functions $(4-5)$ and $(4-6)$ into the expression for the direct utility function

$$
\begin{equation*}
v\left(p_{1}, p_{2}, y\right)=1-\exp \left[-\left(x_{1}^{M}\left(p_{1}, p_{2}, y\right)\right]-\exp \left[-\left(x_{2}^{M}\left(p_{1}, p_{2}, y\right)\right]\right.\right. \tag{5-9}
\end{equation*}
$$

to get

$$
\begin{equation*}
v\left(p_{1}, p_{2}, y\right)=1-\left[\left(\frac{p_{2}}{p_{1}}\right)^{-\frac{p_{2}}{p_{1}+p_{2}}}+\left(\frac{p_{1}}{p_{2}}\right)^{-\frac{p_{1}}{p_{1}+p_{2}}}\right] e^{-\frac{y}{p_{1}+p_{2}}} \tag{5-10}
\end{equation*}
$$

Expressions $(5-8)$ and $(5-10)$ are identical (as they must be), since it is always true that

$$
\begin{equation*}
\left(\frac{a}{b}\right)^{-\frac{a}{a+b}}+\left(\frac{b}{a}\right)^{-\frac{b}{a+b}}=(a+b) a^{-\frac{a}{a+b}} b^{-\frac{b}{a+b}} \tag{5-11}
\end{equation*}
$$

for any $a, b>0$.

