Do all 5 questions. Each counts 20\%.

1. Could the following 3 equations be Hicksian demand functions (if the reference level of utility u were high enough that $\left.u>\ln p_{1}-\ln p_{2}-\ln p_{3}\right)$? Explain briefly.

$$
\begin{gathered}
x_{1}(\mathbf{p}, u)=u-\ln p_{1}+\ln p_{2}+\ln p_{3} \\
x_{2}(\mathbf{p}, u)=\frac{p_{1}}{p_{2}} \\
x_{3}(\mathbf{p}, u)=\frac{p_{1}}{p_{3}}
\end{gathered}
$$

2. Find all the violations of the strong and weak axioms of revealed preference in the following table, which indicates the prices p^{t} of three different commodities at four different times, and the quantities x^{t} of the 3 goods chosen at the four different times. (For example, the second row indicates that the consumer chose the bundle $\mathbf{x}=(30,40,30)$ when the price vector was $\mathbf{p}=(2,1,2)$.

t	p_{1}^{t}	p_{2}^{t}	p_{3}^{t}	x_{1}^{t}	x_{2}^{t}	x_{3}^{t}
1	2	2	2	50	20	30
2	2	1	2	30	40	30
3	3	2	2	60	30	8
4	2	2	1	50	40	20

3. If a person was an expected utility maximizer with a utility-of-wealth function

$$
u(W)=W^{2}-\frac{8000000}{W}
$$

(where W is her wealth, in thousands of dollars), give an example of a gamble g for which $E[u(g)]<$ $u(E g)$ for this person, and an example of a gamble g^{\prime} for which $E\left[u\left(g^{\prime}\right)\right]>u\left(E g^{\prime}\right)$.
4. How much insurance would a person buy against a loss of L dollars, if the person had initial wealth of $W>L$, if the probability of the loss were π, and if the price of a dollar of insurance coverage were p dollars (with $p \geq \pi$), and if the person had a constant coefficient of relative risk aversion of $\beta>0$?
5. For what values of $\left(x_{1}, x_{2}, x_{3}\right)$ does the production function

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}+10 \frac{x_{3}}{x_{3}+1}
$$

exhibit locally increasing returns to scale?

