GS/ECON 5010 section "B" Answers to Assignment 2 October 2012

Q1. Could the following 3 equations be Hicksian demand functions (if the reference level of utility u were high enough that $\left.u>\ln p_{1}-\ln p_{2}-\ln p_{3}\right)$? Explain briefly.

$$
\begin{gathered}
x_{1}(\mathbf{p}, u)=u-\ln p_{1}+\ln p_{2}+\ln p_{3} \\
x_{2}(\mathbf{p}, u)=\frac{p_{1}}{p_{2}} \\
x_{3}(\mathbf{p}, u)=\frac{p_{1}}{p_{3}}
\end{gathered}
$$

A1 Given the proposed Hicksian demand functions, the consumer's expenditure function $e(\mathbf{p}, u)$ would have to equal $p_{1} x_{1}^{H}(\mathbf{p}, u)+p_{2} x_{2}^{H}(\mathbf{p}, u)+p_{3} x_{3}^{H}(\mathbf{p}, u)$, or here

$$
\begin{equation*}
e(\mathbf{p}, u)=p_{1} u-p_{1} \ln p_{1}+p_{1} \ln p_{2}+p_{1} \ln p_{3}+2 p_{1} \tag{1-1}
\end{equation*}
$$

Theorem 1.7 in Jehle and Reny lists the properties which an expenditure function must have.
It must be increasing in u, which $e(\mathbf{p}, u)$ is. If we calculate the first derivatives of $e(\mathbf{p}, u)$ with respect to the prices,

$$
\begin{align*}
e_{1}(\mathbf{p}, u)=u-\ln p_{1}-1+\ln p_{2}+\ln p_{3}+2 & =u-\ln p_{1}+\ln p_{2}+\ln p_{3}+1=x_{1}^{H}(\mathbf{p}, u)+1 \tag{1-2}\\
e_{2}(\mathbf{p}, u) & =\frac{p_{1}}{p_{2}}=x_{2}^{H}(\mathbf{p}, u) \tag{1-3}\\
e_{3}(\mathbf{p}, u) & =\frac{p_{1}}{p_{3}}=x_{3}^{H}(\mathbf{p}, u) \tag{1-4}
\end{align*}
$$

Equations $(1-2)-(1-4)$ show that $e(\mathbf{p}, u)$ defined by equation $(1-1)$ is increasing in all prices. But Shepherd's Lemma does NOT hold : $e_{1}(\mathbf{p}, u)=x_{1}^{H}(\mathbf{p}, u)+1>x_{1}^{H}(\mathbf{p}, u)$

The expenditure function can also be written

$$
\begin{equation*}
e(\mathbf{p}, u)=p_{1} u-p_{1} \ln \left(\frac{p_{1}}{p_{2}}\right)+p_{1} \ln p_{3}+2 p_{1} \tag{1-5}
\end{equation*}
$$

Equation $(1-5)$ shows that the expenditure function here is NOT homogeneous of degree 1 in prices together. If we double all prices, 3 of the 4 terms on the right-hand side of $(1-5)$ will double. But the third term $\left(p_{1} \ln p_{3}\right.$ would more than double, to $2 p_{1}\left[\ln \left(p_{3}\right)+\ln (2)\right]$ if all prices doubled.

More simply : the alleged Hicksian demand function $x_{1}(\mathbf{p}, u)=u-\ln p_{1}+\ln p_{2}+\ln p_{3}$ is also not homogeneous of degree 0 in prices. It can be written

$$
\begin{equation*}
x_{1}(\mathbf{p}, u)=u+\ln \left(\frac{p_{2}}{p_{1}}\right)+\ln p_{3} \tag{1-6}
\end{equation*}
$$

so that doubling all prices would actually increase x_{1}^{H}, which means it cannot be a Hicksian demand function.

So the properties of Theorem 1.7 do not hold for the expenditure function constructed from the (alleged) Hicksian demand functions given in the question : the three functions $x_{1}^{H}(\mathbf{p}, u), x_{2}^{H}(\mathbf{p}, u), x_{3}^{H}(\mathbf{p}, u)$ cannot be Hicksian demand functions. (Subtract $2 \ln p_{1}$ instead of just $\ln p_{1}$ on the right side of the definition of $x_{1}(\mathbf{p}, u)$, and we will have Hicksian demand functions, as shown in question \#1 of the Fall 2011 Assignment \#2.)

Q2. Find all the violations of the strong and weak axioms of revealed preference in the following table, which indicates the prices p^{t} of three different commodities at four different times, and the quantities x^{t} of the 3 goods chosen at the four different times. (For example, the second row indicates that the consumer chose the bundle $\mathbf{x}=(30,40,30)$ when the price vector was $\mathbf{p}=(2,1,2)$.)

t	p_{1}^{t}	p_{2}^{t}	p_{3}^{t}	x_{1}^{t}	x_{2}^{t}	x_{3}^{t}
1	2	2	2	50	20	30
2	2	1	2	30	40	30
3	3	2	2	60	30	8
4	2	2	1	50	40	20

A2. One way of finding the violations of the strong and weak axioms of revealed preference is first to construct the matrix, in which the element $M_{i j}$ is the cost of bundle \mathbf{x}^{j} at prices \mathbf{p}^{i}. Here that matrix is

$$
\left(\begin{array}{llll}
200 & 200 & 196 & 220 \\
180 & 160 & 166 & 180 \\
250 & 230 & 256 & 270 \\
170 & 170 & 188 & 200
\end{array}\right)
$$

Using this matrix, the bundle \mathbf{x}^{i} is directly revealed preferred to the bundle \mathbf{x}^{j} if $M_{i i} \geq M_{i j}$. For example, row 3 of the matrix has $X_{33}>X_{32}$: that means that bundle \mathbf{x}^{3} is directly revealed preferred to bundle \mathbf{x}^{2}, since bundle \mathbf{x}^{2} was affordable in period 3 (it cost $\$ 230$), and the person instead chose bundle \mathbf{x}^{3}.

The second row of the table shows that the bundle \mathbf{x}^{2} is not (directly) revealed preferred to any other bundle. That means that we cannot have any violations of $W A R P$ or $S A R P$ involving the bundle \mathbf{x}^{2} : to be part of a chain of "is revealed directly preferred to" in a violation of $S A R P$, a bundle must be revealed preferred to something else.

In the top row, bundle \mathbf{x}^{1} is directly revealed preferred to bundles \mathbf{x}^{2} and \mathbf{x}^{3}. Row 3 then provides a violation of $W A R P$: row 3 shows that \mathbf{x}^{3} is directly revealed preferred to \mathbf{x}^{1}, and row 1 shows that \mathbf{x}^{1} is directly revealed preferred to \mathbf{x}^{3}.

Row 4 shows that bundle \mathbf{x}^{4} is directly revealed preferred to each of the other three bundles. But no other bundle is directly revealed preferred to x^{4}. That is, the cost total in the fourth column is bigger than the cost total on the diagonal in each of rows 1,2 and 3 .

So there is one violation of $W A R P$ here, and that's also the only violation of $S A R P: \mathbf{x}^{3}$ directly revealed preferred to \mathbf{x}^{1}, and \mathbf{x}^{1} directly revealed preferred to \mathbf{x}^{3}.

Q3. If a person was an expected utility maximizer with a utility-of-wealth function

$$
u(W)=W^{2}-\frac{8000000}{W}
$$

(where W is her wealth, in thousands of dollars), give an example of a gamble g for which $E[u(g)]<$ $u(E g)$ for this person, and an example of a gamble g^{\prime} for which $E\left[u\left(g^{\prime}\right)\right]>u\left(E g^{\prime}\right)$.
$A 3$. This utility-of-wealth is concave when $0<W<200$, and convex for $W>200$, since

$$
\begin{equation*}
u^{\prime}(W)=2 W+\frac{8000000}{W^{2}} \tag{3-1}
\end{equation*}
$$

and

$$
\begin{equation*}
u^{\prime \prime}(W)=2-\frac{16000000}{W^{3}} \tag{3-2}
\end{equation*}
$$

From equation $(3-2), u^{\prime \prime}(W)<0$ if and only if

$$
\begin{equation*}
W^{3}<8000000 \tag{3-3}
\end{equation*}
$$

Since $(200)^{3}=8000000, u^{\prime \prime}(W)<0$ if and only if $W<200$.
So, in particular, this person will be risk averse for any gamble $g=\left(p_{1} \circ W_{1}, p_{2} \circ W_{2}, \cdots, p_{n} \circ W_{n}\right)$ for which $200 \geq W_{1}>W_{2}>\cdots>W_{n}$. An example is the gamble

$$
g=(0.5 \circ 5,0.5 \circ 1)
$$

Here

$$
E u(g)=(0.5)(25-800000)+(0.5)(1-4000000)=13-2,200,000=-2,199,987
$$

and

$$
E g=3
$$

so that

$$
u(E g)=9-\frac{4000000}{3}=-1,333,324.33
$$

and $u(E g)>E(u(g))$.
And for any gamble $g=\left(p_{1} \circ W_{1}, p_{2} \circ W_{2}, \cdots, p_{n} \circ W_{n}\right)$ for which $W_{1}>W_{2}>\cdots>W_{n} \geq 200$, the person will be a risk lover. An example is the gamble

$$
=(0.5 \circ 3000,0.5 \circ 1000)
$$

Here
$E u(g)=(0.5)\left(9000000-\frac{8000000}{3000}\right)+(0.5)\left(1000000-\frac{8000000}{1000}\right)=5000000-10666.67=5989933.33$
and

$$
E g=2000
$$

so that

$$
u(E g)=4000000-\frac{8000000}{2000}=3996000
$$

and $u(E g)<E u(g)$.

Q4. How much insurance would a person buy against a loss of L dollars, if the person had initial wealth of $W>L$, if the probability of the loss were π, and if the price of a dollar of insurance coverage were p dollars (with $p \geq \pi$), and if the person had a constant coefficient of relative risk aversion of $\beta>0$?
$A 4$. If a person has a constant coefficient of relative risk aversion β, then her utility-of-wealth function can be written

$$
\begin{equation*}
u(W)=\frac{1}{1-\beta} W^{1-\beta} \tag{4-1}
\end{equation*}
$$

If she has initial wealth W, expects to suffer a loss of L with probability π, and buys X dollars worth of coverage, at a cost of p per dollar of coverage, then her wealth will be

$$
\begin{equation*}
W_{g}=W-p X \tag{4-3}
\end{equation*}
$$

in the good state (in which she does not suffer a loss) and

$$
\begin{equation*}
W_{b}=W-L-p X+X \tag{4-3}
\end{equation*}
$$

in the bad state (in which she suffers a loss, and gets a payment of X from the insurance company as compensation).

So her expected utility is

$$
\begin{equation*}
E U=(1-\pi) u\left(W_{g}\right)+\pi U\left(W_{b}\right) \tag{4-4}
\end{equation*}
$$

She wants to pick a level of coverage X so as to maximize her expected utility : so she tries to find the value of X for which the derivative of $E U$ with respect to X is zero.

From equations (4-1)-(4-4),

$$
\begin{equation*}
\frac{\partial E U}{\partial X}=-p(1-\pi)[W-p X]^{-\beta}+(1-p) \pi[W-L+(1-p) X]^{-\beta}=0 \tag{4-5}
\end{equation*}
$$

Equation $(4-5)$ can be written

$$
\begin{equation*}
W-p X=\gamma[W-L+(1-p) X] \tag{4-6}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma=\left[\frac{p}{1-p} \frac{1-\pi}{\pi}\right]^{1 / \beta} \tag{4-7}
\end{equation*}
$$

Notice that $\gamma=1$ if $p=\pi, \gamma>1$ if $p>\pi$, and that γ is a decreasing function of the degree of relative risk aversion β when $p>\pi$.

Equation $(4-6)$ can be re-arranged into

$$
\begin{equation*}
X[\gamma-(\gamma-1) p]=\gamma L-(\gamma-1) W \tag{4-8}
\end{equation*}
$$

or

$$
\begin{equation*}
X=\frac{\gamma}{\gamma-(\gamma-1) p} L-\frac{\gamma-1}{\gamma-(\gamma-1) p} W \tag{4-9}
\end{equation*}
$$

If insurance is actually fair, then $p=\pi$, so that $\gamma=1$, and equation $(4-9)$ says that the person buys full insurance : $X=L$. [This is true regardless of the value of the person's coefficient of relative risk aversion, since $\gamma=1$ when $p=\pi$, regardless of the value of β.]

Equation $(4-9)$ can be re-written as

$$
\begin{equation*}
X=L-\frac{\gamma-1}{\gamma-(\gamma-1) p}[W-p L] \tag{4-10}
\end{equation*}
$$

Equation $(4-10)$ shows that the person buys less-than-full insurance when $p>\pi$ (so that $\gamma>1)$; it shows that the total amount of insurance falls as her wealth increases (holding c onstant the amount L of the loss) ; and the amount of insurance increases as her coefficient of relative risk aversion β increases [the fraction $\frac{\gamma-1}{\gamma-(\gamma-1) p}$ in equation $(4-10)$ is an increasing function of γ, so that the amount of insurance purchased decreases with γ, and it was stated above that γ is a decreasing function of β when $p>\pi$.]

Equation $(4-11)$ can also be written

$$
\begin{equation*}
\frac{X}{L}=1-\frac{\gamma-1}{\gamma-(\gamma-1) p}\left[\frac{W}{L}-p\right] \tag{4-11}
\end{equation*}
$$

so that the percentage of the loss which a person chose to insure would not vary with her wealth, if the loss were a constant fraction of her wealth. (That is : if W and L both doubled, then her preferred amount of coverage X would also double.)

Q5. For what values of $\left(x_{1}, x_{2}, x_{3}\right)$ does the production function

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}+10 \frac{x_{3}}{x_{3}+1}
$$

exhibit locally increasing returns to scale?
A5. The measure of local returns to scale is $\mu\left(x_{1}, x_{2}\right)$, defined (in definition 3.4 of the text) by

$$
\mu(\mathbf{x})=\frac{f_{1}(\mathbf{x}) x_{1}+f_{2}(\mathbf{x}) x_{2}+f_{3}(\mathbf{x}) x_{3}}{f(\mathbf{x})}
$$

where f_{i} denotes the partial derivative with respect to x_{i}.
Here

$$
\begin{aligned}
& f_{1}(\mathbf{x})=x_{2} \\
& f_{2}(\mathbf{x})=x_{1}
\end{aligned}
$$

and

$$
f_{3}(\mathbf{x})=\frac{10}{\left(x_{3}+1\right)^{2}}
$$

so that

$$
\begin{equation*}
f_{1} x_{1}+f_{2} x_{2}+f_{3} x_{3}=2 x_{1} x_{2}+\frac{10 x_{3}}{\left(x_{3}+1\right)^{2}} \tag{5-1}
\end{equation*}
$$

Equation (5-1) shows that $f_{1} x_{1}+f_{2} x_{2}+f_{3} x_{3}>f\left(x_{1}, x_{2}, x_{3}\right)$ if and only if

$$
\begin{equation*}
x_{1} x_{2}>10\left[\frac{x_{3}}{x_{3}+1}\right]^{2} \tag{5-2}
\end{equation*}
$$

Since $\mu\left(x_{1}, x_{2}, x-3\right)>1$ if and only if $f_{1} x_{1}+f_{2} x_{2}+f_{3} x_{3}>f\left(x_{1}, x_{2}, x_{3}\right)$, inequality $(5-2)$ is exactly the condition for $\mu\left(x_{1}, x_{2}, x_{3}\right)$ to exceed 1 .

And the production function exhibits locally increasing returns to scale if and only if $\mu(x)>1$, so that inequality $(5-2)$ is the condition for locally increasing returns to scale.

