GS/ECON 5010 Section "B" Assignment 4 F2012

due : Wednesday November 28 before class

Do all 5 questions. Each counts 20%.

1. What are the allocations in the core of the following 3 -person, 2 -good economy?

Each of the three people regards the two goods as perfect complements : her preferences can be represented by the utility function $u\left(x_{1}^{i}, x_{2}^{i}\right)=\min \left(x_{1}^{i}, x_{2}^{i}\right)$.

The endowments of the three people are $\mathbf{e}^{1}=(1,0), \mathbf{e}^{2}=(2,0), \mathbf{e}^{3}=(0,3)$.
2. Show that the following allocation is not in the core, in the 20-person economy described below : $x^{i}=(9,9)$ for i odd, and $x^{i}=(11,11)$ for i even.

In the economy, each person's preferences can be represented by the utility function

$$
u^{i}\left(x_{1}^{i}, x_{2}^{i}\right)=x_{1}^{i} x_{2}^{i}
$$

The endowment vectors are $e^{i}=(20,0)$ for i odd, and $e^{i}=(0,20)$ for i even.
3. What is the competitive (Walrasian) equilibrium in an exchange economy in which there are 1 million people of type 1 , and 1 million people of type 2 , in which each type- 1 person has an endowment vector $\mathbf{e}^{1}=(3,1)$, each type-2 person has an endowment of $\mathbf{e}^{2}=(2,2)$ and each person, of either type, has preferences which can be represented by the utility function

$$
u^{i}\left(x_{1}^{i}, x_{2}^{i}\right)=x_{1}^{i}\left[x_{2}^{i}\right]^{2} \quad ?
$$

4. Find all the Nash equilibria (in pure and mixed strategies) in the following strategic-form two-person game.

	a	b	c	d
A	$(0,1)$	$(6,2)$	$(0,0)$	$(10,1)$
B	$(2,3)$	$(4,5)$	$(1,4)$	$(8,10)$
C	$(1,6)$	$(0,4)$	$(0,8)$	$(6,8)$
	over			

5. Find the subgame perfect Nash equilibrium to the following 2-player game.

The game has several stages. The 2 players are the owners (player 1) and the hockey players (player 2). In stage 1 , player 1 gets to propose shares $\left(s_{1}, s_{2}\right)$ of the available revenue, which is $\$ 1$ billion initially. So s_{1} is the share of the revenue which goes to player 1 , and $s_{2} \equiv 1-s_{1}$ is the share which goes to player 2 .

Player 2 moves next. Player 1 can "accept" the original proposal, in which case the game ends, with payoffs of s_{1} times 1 billion dollars for player 1 , and s_{2} times 1 billion dollars for player 2. Or player 2 can "reject" the initial proposal, and counter-propose a different split $\left(t_{1}, t_{2}\right)$ of the revenue. However, due to the delay caused by the bargaining, if player 2 rejects the initial proposal, the available revenue will have shrunk, from $\$ 1$ billion, to $\$ 800$ million.

If player 2 has rejected the initial proposal, and made a counter-proposal, then player 1 gets to move again. Player 1 can "accept" player 2's counter-proposal, in which case the game ends, with payoffs of t_{1} times 800 million to player 1 , and t_{2} times 800 million to player 2 . Or player 1 can "reject" the counter-proposal, and make a new (third) proposal $\left(u_{1}, u_{2}\right)$ for a split of the revenue. But due to the delay caused by the extended bargaining, if player 1 rejects this counter-proposal, the available revenue will have shrunk, from $\$ 800$ million, to $\$ 600$ million.

If the first two proposals have been rejected, there is a final move to the game. Player 2 gets to choose whether to accept player 1's new proposal $\left(u_{1}, u_{2}\right)$, or to reject it. If the proposal is accepted, the game ends, with payoffs of u_{i} times $\$ 600$ million to player i. But if this last proposal is rejected, the game still ends. If this last proposal is rejected, player 2 will still get $\$ 200$ million (from playing in the Kontinental Hockey League), but player 1 will get a zero payoff, because the season will be cancelled.

