
GS/ECON 5010 section “B”’ Answers to Assignment 4 November 2012

Q1. What are the allocations in the core of the following 3–person, 2–good economy?

Each of the three people regards the two goods as perfect complements : her preferences

can be represented by the utility function u(xi
1, x

i
2) = min (xi

1, x
i
2).

The endowments of the three people are e1 = (1, 0), e2 = (2, 0), e3 = (0, 3).

A1. Since the two goods are perfect complements, efficiency requires that each person get the

same quantity of either good. So any allocation in the core must be of the form x1 = (a, a),x2 =

(b, b),x3 = (c, c), where a + b + c = 3.

“Individual rationality” (coalitions of size 1) has no impact here, since none of the three people

has an endowment containing both goods : so going off on one’s own, and consuming one’s own

endowment, yields each person a utility of 0. Nothing can be blocked by a coalition of size 1.

Similarly, the coalition {1, 2} cannot block any allocation, since that coalition has no endow-

ment of good 2.

The coalition {1, 3} has a total endowment of (1, 3). So if the proposed allocation has a+c < 1,

then it can be blocked by a coalition of {1, 3} : that coalition could allocate (a, a) to person 1, and

(1 − a, 3 − a) to person 3, which would be better for person 3, and at least as good for person 1,

as the original allocation, if (and only if) 1− a > c.

The coalition {2, 3} has a total endowment of (2, 3). So if the proposed allocation has b+c < 2,

then it can be blocked by a coalition of {2, 3} : that coalition could allocate (b, b) to person 2, and

(2− b, 3− b) to person 3, which would be better for person 3, and at least as good for person 2, as

the original allocation, if (and only if) 2− b > c.

And that’s all the possible blocking coalitions. So an allocation (x1,x2,x3) will be in the core

if and only if x1 = (a, a),x2 = (b, b),x3 = (c, c), with a, b, c all non–negative, and with a + c ≥ 1,

b + c ≥ 2. So, for example, the allocations ((1, 1), (2, 2), (0, 0)) and ((0, 0), (0, 0), (3, 3)) are both in

the core ; so are the allocations ((1, 1), (0, 0), (2, 2)) and ((0, 0), (2, 2), (1, 1).



Q2. Show that the following allocation is not in the core, in the 20-person economy described

below : xi = (9, 9) for i odd, and xi = (11, 11) for i even.

In the economy, each person’s preferences can be represented by the utility function

ui(xi
1, x

i
2) = xi

1x
i
2

The endowment vectors are ei = (20, 0) for i odd, and ei = (0, 20) for i even.

A2. In the proposed allocation, the odd–numbered people are getting less than the even–

numbered people. So they would like to block the proposed allocation. However, they need the

endowment of good #2 which only the even–numbered people have.

The best way for the odd–numbered people to block the original allocation is to form a coalition

which leaves out only one of the even–numbered people. So consider a coalition with 19 people

: all the odd–numbered people and all but one of the even–numbered people. To get any even–

numbered people to join this blocking coalition, the coalition must offer these people at least as

much utility as they got in the original proposed allocation. Here that’s (11)(11) = 121.

One way of doing this is to offer them the exact same consumption bundle as they would get

in the original proposed allocation : (11, 11). [It’s not the most efficient way of blocking, but it

will turn out to be good enough here.]

Offering (11, 11) to each of 9 even–numbered people will require 99 units of good 1 and 99 units

of good 2. The total endowment of this 19–person coalition is (200, 180). So that leaves 101 units

of good 1, and 81 units of good 2, for each of the 10 odd–numbered people in the coalition. If this

remaining endowment is divided equally among these 10 people, they’ll each get the consumption

bundle (10.1, 8.1).

The utility each odd–numbered coalition member would get from this proposed coalition will

be (10.1)(8.1) = 81.61. That’s (just) higher than the utility they got in the original proposed

allocation, which was (9)(9) = 81.

So the proposed allocation can be blocked by a coalition consisting of all 10 odd–numbered

people, and 9 of the even–numbered people, with each odd–numbered coalition member getting

(10.1, 8.1) and each even–numbered coalition member getting (11, 11).



Q3. What is the competitive (Walrasian) equilibrium in an exchange economy in which there

are 1 million people of type 1, and 1 million people of type 2, in which each type–1 person has

an endowment vector e1 = (3, 1), each type–2 person has an endowment of e2 = (2, 2) and each

person, of either type, has preferences which can be represented by the utility function

ui(xi
1, x

i
2) = xi

1[xi
2]2 ?

A3. Since each person has Cobb–Douglas preferences, her Marshallian demand function for

good 2 can be written

xi
2(p, y) =

2

3

yi

p2
(3− 1)

Suppose that we make good #1 the numéraire, so that the price vector is some p = (1, p), where

p is the relative price of good 2, compared to the price of good 1. Then each person’s income is

yi = ei1 + pei2, so that

y1 = 3 + p y2 = 2 + 2p

and the overall demands of each person for good 2 will be

x1
2 =

2

3p
(3 + p) x2

2 =
2

3p
(2 + 2p)

In equilibrium, the total quantity demanded of good 2 must equal the total endowment. The

total demand (divided by 1 million) is x1
2 + x2

2, and the total endowment (divided by 1 million) is

1 + 2 = 3. So the market for good #2 will be in equilibrium if and only if total quantity demanded

equals total endowment, or
2

3p
[3 + p + 2 + 2p] = 3 (3− 2)

Multiplying both sides of equation (3− 2) by 3p, it can be written

9p = 10 + 6p (3− 3)

or

p =
10

3

So the Walrasian equilibrium price vector is

p = (3, 10) (3− 4)

— or any vector (p1, p2) which is proportional to (3, 10).

With this price vector, the incomes of the two types of people are y1 = 3(3) + 10 = 19, and

y2 = 2(3) + 2(10) = 26. The consumption vectors for the two people are then their Marshallian

demands for the two goods, corresponding to incomes of 19 and 26 and the price vector (3, 10).

Since

xi
1 =

1

3p1
yi (3− 5)



with these Cobb–Douglas preferences, equations (3 − 1) and (3 − 5) imply that the consumption

bundles for the two people in equilibrium, their Walrasian equilibrium allocations, are

x1 = (
19

9
,

19

15
) x2 = (

26

9
,

26

15
) (3− 6)

Q4. Find all the Nash equilibria (in pure and mixed strategies) in the following strategic–form

two–person game.

a b c d

A (0, 1) (6, 2) (0, 0) (10, 1)
B (2, 3) (4, 5) (1, 4) (8, 10)
C (1, 6) (0, 4) (0, 8) (6, 8)

A4. This game can be solved by iterated elimination of strictly dominated strategies — which

means that it has a unique Nash equilibrium.

First note that strategy C of player #1 is strictly dominated by strategy B : each of the first

numbers in the second row of the matrix is strictly bigger than the corresponding number in the

third row.

So, if rational, player 1 will never play strategy C. Player 2 will realize this (if rationality of

the players is common knowledge), and therefore believe that there is zero chance that player 1

will ever play strategy C. That reduces the strategic form to

a b c d

A (0, 1) (6, 2) (0, 0) (10, 1)
B (2, 3) (4, 5) (1, 4) (8, 10)

But if player 1 is going to play only A or B, then both strategies a and c are strictly dominated

by strategy b for player 2. Player 2 knows that playing a (or c) would make sense only if there is

some chance that player 1 would play C, and he knows that if player 1 is rational then she would

never want to play C.

So we can cross out these two strategies for player 2, reducing the strategic form diagram to

b d

A (6, 2) (10, 1)
B (4, 5) (8, 10)

In this new game, player 1 has a strictly dominant strategy, A, since A is a better response

for her than B to either b or d. [And she knows that 2 will play only b or d, since she knows that

2 knows that a or c would be rational only if 1 played C, and 1 knows that 2 knows that 1 is

rational, and would never play C.]



Since 1 plays her dominant strategy (to this reduced game) A, 2 will play his best response to

A, which is b.

Elimination of strictly dominated strategies results in (A, b) as an equilibrium, and since the

eliminated strategies at each stage were strictly dominated, (A, b) is the only Nash equilibrium (in

pure or mixed strategies) to this game.

Q5. Find the subgame perfect Nash equilibrium to the following 2–player game.

The game has several stages. The 2 players are the owners (player 1) and the hockey players

(player 2). In stage 1, player 1 gets to propose shares (s1, s2) of the available revenue, which is

$1 billion initially. So s1 is the share of the revenue which goes to player 1, and s2 ≡ 1− s1 is the

share which goes to player 2.

Player 2 moves next. Player 1 can “accept” the original proposal, in which case the game

ends, with payoffs of s1 times 1 billion dollars for player 1, and s2 times 1 billion dollars for player

2. Or player 2 can “reject” the initial proposal, and counter–propose a different split (t1, t2) of

the revenue. However, due to the delay caused by the bargaining, if player 2 rejects the initial

proposal, the available revenue will have shrunk, from $1 billion, to $800 million.

If player 2 has rejected the initial proposal, and made a counter–proposal, then player 1 gets to

move again. Player 1 can “accept” player 2’s counter–proposal, in which case the game ends, with

payoffs of t1 times 800 million to player 1, and t2 times 800 million to player 2. Or player 1 can

“reject” the counter–proposal, and make a new (third) proposal (u1, u2) for a split of the revenue.

But due to the delay caused by the extended bargaining, if player 1 rejects this counter–proposal,

the available revenue will have shrunk, from $800 million, to $600 million.

If the first two proposals have been rejected, there is a final move to the game. Player 2 gets

to choose whether to accept player 1’s new proposal (u1, u2), or to reject it. If the proposal is

accepted, the game ends, with payoffs of ui times $600 million to player i. But if this last proposal

is rejected, the game still ends. If this last proposal is rejected, player 2 will still get $200 million

(from playing in the Kontinental Hockey League), but player 1 will get a zero payoff, because the

season will be cancelled.

A5. To find the subgame perfect equilibrium to this game, it should be solved by backwards

induction, from the “bottom up”.

So start with the last decision node (which may never be reached) : player 2 deciding whether

to accept player 1’s last offer of (u1, u2). Player 2 will get a payoff of 200 (all payoffs measured in

hundreds of millions of dollars) if he rejects the last offer. So his strategy, for this last sub–game,

is to reject player 1’s final offer, unless it gives player 2 a payoff of at least 200. Since player 2 gets

a payoff of (600)u2 if he accepts the final offer, then his best strategy, should this decision node

be reached, is “accept an offer (u1, u2) if and only if u2 ≥ 1
3”. (I am assuming here that ties are

broken in favour of acceptance.)

Now go to the previous node. If player 1 gets to make a final proposal (u1, u2), she should



propose u2 = 1
3 (and u1 = 2

3 ). If u2 were any lower, the offer would be rejected, and player 1 would

get nothing. If u2 were any higher, player 1 is giving up revenue unnecessarily, since any offer of

u2 = 1
3 or more will be accepted for sure.

So if player 1 gets to make a final offer, she will propose u = ( 2
3 ,

1
3 ) and will get a payoff of

400. So that means she should accept any offer (from player 2) which gives her at least 400 : that

is t1 ≥ 0.5 (since her payoff if she accepts a counter–offer from player 2 will be 800t1).

That means that player 1’s equilibrium action, should she be given a counter–proposal from

player #2, is : “accept any offer with t1 ≥ 0.5 ; reject any offer with t1 < 0.5 and counter–propose

(u1, u2) = (2
3 ,

1
3 )”.

Now consider player 2’s action at his initial decision node. If he rejects the original offer, and

gets to propose a counter–offer (t1, t2), then he should propose the minimum acceptable counter–

offer, (t1, t2) = (0.5, 0.5). That counter–proposal will be accepted (if player 1 plays her equilibrium

strategy at the subsequent node), yielding a payoff to player 2 of (0.5)(800) = 400.

So player 2 expects to get a payoff of 400 if he rejects the original proposal, and counter–

proposes his best counter–proposal (of (0.5, 0.5)). That means he should reject any offer (s1, s2)

from player 1, unless that offer gives him a payoff of at least 400. That means rejecting the original

offer unless s2 ≥ 0.4. His equilibrium action, at his first decision node, is therefore “accept any

offer with s1 ≤ 0.6 ; reject any offer with s1 > 0.6 and counter–propose (t1, t2) = (0.5, 0.5)”.

Finally, we get to the top of the diagram. What should player 1 do in her original move? She

anticipates that any offer will be rejected if s1 > 0.6 — and that she would then wind up accepting

a counter–offer which gives her (0.5)(800) = 400 as a payoff. She is better off making the minimal

(from player 2’s perspective) acceptable offer : (s1, s2) = (0.6, 0.4).

So the subgame perfect equilibrium strategies are : “propose (s1, s2) = (0.6, 0.4) initially ; if

the original offer is reject, accept any counter–proposal with t1 ≥ 0.5 ; reject any counter–proposal

with t1 < 0.5 and ‘counter–counter–propose’ (u1, u2) = ( 2
3 ,

1
3 )” for player 1, and “accept any

original offer with s1 ≤ 0.6 ; reject any offer with s1 > 0.6 and counter–propose (t1, t2) = (0.5, 0.5)

; accept a final offer (u1, u2) if and only if u2 ≥ 1
3 if the final stage is reached” for player 2.


