Do all 5 questions. Each counts 20%.

1. Could the function

$$
v(\mathbf{p}, y)=\frac{1}{p_{1}+p_{2}}\left[y+\frac{\left(p_{1}\right)^{2}+\left(p_{2}\right)^{2}}{p_{3}}-6 p_{3}\right]
$$

be an indirect utility function for some consumer with well-behaved preferences? Explain.
(You can assume that the person's income y is large enough, relative to prices, that the consumer's quantities demanded are non-negative.)
2. Find all the violations of the strong and weak axioms of revealed preference in the following table, which indicates the prices p^{t} of three different commodities at four different times, and the quantities x^{t} of the 3 goods chosen at the four different times. (For example, the second row indicates that the consumer chose the bundle $\mathbf{x}=(20,5,5)$ when the price vector was $\mathbf{p}=$ $(5,20,10)$.)

t	p_{1}^{t}	p_{2}^{t}	p_{3}^{t}	x_{1}^{t}	x_{2}^{t}	x_{3}^{t}
1	10	10	10	10	10	10
2	5	20	10	20	5	5
3	5	10	20	5	5	10
4	10	5	20	10	5	15

3. If a person has a constant coefficient of relative risk aversion equal to 2 , what is the probability of winning ρ which must be offered the person - as a function of her initial wealth $W_{0}>1000$ - to make her just willing to accept the following bet? The bet : with probability ρ the person wins 1000 dollars, but with probability $1-\rho$ she loses 1000 dollars.
4. If a person has a constant coefficient of relative risk aversion equal to 2 , how much insurance coverage will she want to buy against a loss of L dollars, if the probability of the loss occurring is π, and if the price of one dollar's worth of insurance coverage is p dollars, with $p \geq \pi$?
5. For what values of $\left(x_{1}, x_{2}, x_{3}\right)$ does the production function

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}\right)^{2}+A\left(x_{2} x_{3}\right)^{1 / 3}
$$

exhibit locally increasing returns to scale (where $A>0$ is some constant)?

