Q1. For what values of α, β and γ would the following pair of functions represent the Marshallian demand functions of a consumer with income y, facing prices $\left(p_{1}, p_{2}\right)$?

$$
\begin{gathered}
x_{1}^{M}\left(p_{1}, p_{2}, y\right)=\frac{y}{2 p_{1}}+\frac{p_{2}}{p_{1}} \\
x_{2}^{M}\left(p_{1}, p_{2}, y\right)=\alpha \frac{y}{p_{2}}+\beta \frac{p_{1}}{p_{2}}-\gamma
\end{gathered}
$$

A1. Marshallian demand functions must obey the adding-up constraint, that

$$
\begin{equation*}
p_{1} x_{1}^{M}\left(p_{1}, p_{2}, y\right)+p_{2} x_{2}^{M}\left(p_{1}, p_{2}, y\right)=y \tag{1-1}
\end{equation*}
$$

for every price-income combination $\left(p_{1}, p_{2}, y\right)$.
Here

$$
\begin{equation*}
p_{1} x_{1}^{M}\left(p_{1}, p_{2}, y\right)+p_{2} x_{2}^{M}\left(p_{1}, p_{2}, y\right)=\frac{1}{2} y+p_{2}+\alpha y+\beta p_{1}-\gamma p_{2} \tag{1-2}
\end{equation*}
$$

The only way that the right hand expression in $(1-2)$ can equal y exactly, for any values of p_{1}, p_{2} and y, is if

$$
\begin{align*}
\alpha & =\frac{1}{2} \tag{1-3}\\
\beta & =0 \tag{1-4}\\
\gamma & =1 \tag{1-5}
\end{align*}
$$

So the "candidate" functions

$$
\begin{align*}
& x_{1}^{M}\left(p_{1}, p_{2}, y\right)=\frac{y}{2 p_{1}}+\frac{p_{2}}{p_{1}} \tag{1-6}\\
& x_{2}^{M}\left(p_{1}, p_{2}, y\right)=\frac{y}{2 p_{2}}-1 \tag{1-7}
\end{align*}
$$

represent Marshallian demand functions if the 2-by-2 Slutsky matrix, with typical element

$$
\begin{equation*}
S_{i j} \equiv \frac{\partial x_{i}^{M}}{\partial p_{j}}+x_{j}^{M}\left(p_{1}, p_{2}, y\right) \frac{\partial x_{i}^{M}}{\partial y} \tag{1-8}
\end{equation*}
$$

is symmetric, and negative semi-definite.
From equations $(1-6)-(1-8)$, that matrix is

$$
S=\left(\begin{array}{cc}
-\frac{y}{\left(p_{1}\right)^{2}}-\frac{p_{2}}{2\left(p_{1}\right)^{2}} & \frac{1}{2 p_{1}}+\frac{y}{4 p_{1} p_{2}} \tag{1-9}\\
\frac{1}{2 p_{1}}+\frac{y}{4 p_{1} p_{2}} & -\frac{y}{4\left(p_{2}\right)^{2}}-\frac{1}{2 p_{2}}
\end{array}\right)
$$

So the matrix is symmetric. The elements on the diagonal are negative. And the determinant of the matrix in equation $(1-9)$ is :

$$
\frac{y^{2}}{16\left(p_{1}\right)^{2}\left(p_{2}\right)^{2}}+\frac{y}{16\left(p_{1}\right)^{2} p_{2}}+\frac{1}{\left(p_{1}\right)^{2}}-\frac{y^{2}}{16\left(p_{1}\right)^{2}\left(p_{2}\right)^{2}}-\frac{y}{16\left(p_{1}\right)^{2} p_{2}}-\frac{1}{\left(p_{1}\right)^{2}}=0
$$

so that the matrix is negative semi-definite, since the elements on the diagonal are negative and the determinant is 0 .
$Q 2$. The following table lists the prices of 3 goods, and the quantities a consumer chose of the goods, in 3 different years.

For what values of A do these data satisfy the strong axiom of revealed preference?

$A 2$. The costs of the three chosen bundles, in each of the three periods, can be represented by the matrix below, where element $i j$ is the price of bundle j in year i :

$$
\begin{array}{lll}
170 & 205 & 155+A \\
170 & 205 & 155+A \\
170 & 265 & 55+5 A
\end{array}
$$

Since the bundle \mathbf{x}^{1} is not directly revealed preferred to the bundle \mathbf{x}^{2}, SARP can only be violated if the bundle \mathbf{x}^{3} is directly preferred to either of the other bundles. So if $A<23$, the third row of the matrix shows that x^{3} is not revealed preferred to either of the other bundles. In that case there can be no violation of SARP.

If $23 \leq A<42$ then \mathbf{x}^{3} is revealed directly to be preferred to \mathbf{x}^{1}, but not to \mathbf{x}^{2}. In that case, the cost of bundle \mathbf{x}^{3} in year 1 falls between 178 and 197, which is greater than the cost of the bundle \mathbf{x}^{1}, which was actually chosen in the year. So again, no possible violations of SARP : \mathbf{x}^{1} is not revealed directly to be preferred to anything, and \mathbf{x}^{3} is not revealed preferred to \mathbf{x}^{2}.

If $A \geq 42$, then bundle \mathbf{x}^{3} is revealed preferred to bundle \mathbf{x}^{2}. So there is a violation of $W A R P$ if bundle \mathbf{x}^{2} is revealed directly to be preferred to bundle \mathbf{x}^{3}. This will be the case if and only if $A \leq 50$.

So violations of $S A R P$ can occur only if and only if $42 \leq A \leq 50$.

Q3. Write down a von Neumann-Morgenstern expected utility function for a person who would be willing to choose each of the following actions if her initial wealth were $W=200$:
(i) Pay more than $\$ 100$ for insurance against a disaster which would lose her all her wealth with probability 0.5.
(ii) Pay more than $\$ 100$ for an investment which would double her wealth with probability 0.5 , and leave her wealth unchanged with probability 0.5 .
$A 3$. If the price were exactly $\$ 100$ in each case, the transactions in (i) and (ii) would both be fair bets : they would leave the expected value of the person's wealth unchanged.

So a person who would want to undertake both actions must be risk averse at lower levels of wealth, and risk-loving at higher levels. A utility-of-wealth function $U(W)$ for such a person must have $U^{\prime \prime}(W)<0$ for some levels of wealth below $\$ 100$, and $U^{\prime \prime}(W)<0$ for some levels of wealth above $\$ 100$.

For example, suppose that

$$
\begin{equation*}
U(W)=20000 \log W+W^{2} \tag{3-1}
\end{equation*}
$$

Then

$$
\begin{equation*}
U^{\prime \prime}(W)=-\frac{20000}{W^{2}}+2 \tag{3-2}
\end{equation*}
$$

so that $U^{\prime \prime}(W)<0$ if and only if $W>100$.
This person would get an expected utility level of $-\infty$ if some disaster could reduce her wealth W to 0 with positive probability. So she would certainly buy insurance against such a disaster at any price less than her whole wealth $W=200$. If the insurnce were ctuarially fair, then buying full insurance would leave her with certain wealth of $\$ 100$. Buying the insurance gives her an expected utility of

$$
\begin{equation*}
U^{I}=20000 \log 100+(100)^{2} \approx 102103 \tag{3-3}
\end{equation*}
$$

and going without insurance would leave her with expected utility

$$
\begin{equation*}
U^{N I}=(0.5)\left[20000 \log 200+(200)^{2}\right]+(0.5)\left[20000 \log 0+(0)^{2}\right]=-\infty \tag{3-4}
\end{equation*}
$$

so she would buy the insurance in case (i).
In case (ii), her expected utility if she did not undertake the investment would be

$$
\begin{equation*}
U^{N R I}=20000 \log 200+(200)^{2} \approx 145966 \tag{3-5}
\end{equation*}
$$

If she undertook the investment, and had to pay a price of $\$ 100$, then she would have 100 if the investment failed, and $2(200)-100=300$ if the investment succeeded, so that her expected utility would be

$$
\begin{equation*}
U^{R I}=(0.5)\left[20000 \log 100+(100)^{2}\right]+(0.5)\left[20000 \log 300+(300)^{2} \approx 153089\right. \tag{3-6}
\end{equation*}
$$

so that $U^{R I}>U^{N R I}$.

Q4. (This is an example of the "St. Petersburg paradox".) If a person were a von NeumannMorgenstern expected utility maximizer, with a constant coefficient of relative risk aversion of 2 , what would be the certainty equivalent to the following compound lottery?

A coin is tossed once. If it lands "heads", she gets $\$ 1000000$. If it lands "tails", the coin is tossed again. If it lands "heads" on the second toss (after "tails" on the first), she gets $\$ 2000000$.

It it lands "tails" on both of the first two tosses, the coin is tossed again, and, if it lands "heads" on the third toss (after landing "tails" twice) she gets $\$ 4000000$. The coin-tossing continues until the first "heads", and her payoff will be 2^{t} million dollars, where t is the number of times that the coin landed "tails" consecutively before the first "heads".
$A 4$. With a $C R R$ expected utility, her utility from a wealth level of W can be written $U(W)=$ $\frac{U^{1-\beta}}{1-\beta}$, where β is the coefficient of relative risk aversion. With $\beta=2$, this means that the utility of a wealth level W is $-1 / W$.

So if we measure wealth in millions of dollars, her expected utility from the gamble would be

$$
\begin{equation*}
E U=-(0.5) \frac{1}{1}-(0.25) \frac{1}{2}-(0.125) \frac{1}{4}-\cdots \tag{4-1}
\end{equation*}
$$

since the probability of a head on the first toss is 0.5 , the probability that the first head is on the second toss is 0.25 , and so on. Expression ($4-1$) can be written

$$
\begin{equation*}
E U=-\frac{1}{2}-\frac{1}{8}-\frac{1}{32}-\cdots \tag{4-2}
\end{equation*}
$$

or

$$
\begin{equation*}
E U=-\frac{1}{2} \sum_{t=0}^{\infty} \frac{1}{4} \tag{4-3}
\end{equation*}
$$

Now a general rule about infinite sums is that

$$
\begin{equation*}
\sum_{t=0}^{\infty} x^{t}=\frac{1}{1-x} \tag{4-4}
\end{equation*}
$$

when $x<1$.
$\left[\right.$ Proof: $\left.(1-x)\left[\sum_{t=0}^{\infty} x^{t}\right]=(1-x)\left[1+x+x^{2}+\cdots\right]=\left(1+x+x^{2}+\cdots\right)-\left(x+x^{2}+x^{3}+\cdots\right)=1\right]$
So, using this general rule,

$$
\begin{equation*}
E U=-\frac{1}{2} \frac{1}{1-0.25}=-\frac{2}{3} \tag{4-5}
\end{equation*}
$$

The certainty equivalent to this gamble is a certain amount of wealth $C E$ such that $U(C E)$ equals the expected utility of the gamble, or $U(C E)=-\frac{2}{3}$. So

$$
\begin{equation*}
-\frac{1}{C E}=-\frac{2}{3} \tag{4-6}
\end{equation*}
$$

meaning that the certainty equivalent $C E$ to the gamble is $\$ 1.5$ million.

Q5. If a person were a von Neumann-Morgenstern expected utility maximizer, with a constant coefficient of relative risk aversion of β, with wealth W_{0} and she faced a 50% chance of losing all her wealth in some accident, for what values of β and W_{0} would she be willing to buy an insurance policy which provided full insurance against the accident, at a cost of a fraction $\alpha>0.5$ of her wealth?
$A 5$. If she did not buy the insurance, then her expected utility would be

$$
\begin{equation*}
E U_{0}=\frac{1}{1-\beta}\left[(0.5)\left(W_{0}\right)^{1-\beta}+(0.5)(0)^{1-\beta}\right] \tag{5-1}
\end{equation*}
$$

whereas if she paid αW_{0} for the insurance, her utility would be a certain

$$
\begin{equation*}
E U_{1}=\frac{1}{1-\beta}\left[(1-\alpha) W_{0}\right]^{1-\beta} \tag{5-2}
\end{equation*}
$$

First, note that the expression $0^{1-\beta}$ is infinite if $\beta>1$. If her coefficient of relative risk aversion is greater than 1 , then she would be willing to pay anything for insurance against the loss of all of her wealth (whatever the probability of loss).

Second, notice that when $\beta<1$, expression (5-2) is bigger than expression (5-1) if and only if

$$
\begin{equation*}
\left[(1-\alpha) W_{0}\right]^{1-\beta}>(0.5)\left(W_{0}\right)^{1-\beta} \tag{5-3}
\end{equation*}
$$

So if $\beta<1$, her choice of whether to buy the insurance does not depend on her initial wealth W_{0} ; she will purchase the insurance if and only if

$$
\begin{equation*}
(1-\alpha)^{1-\beta}>0.5 \tag{5-4}
\end{equation*}
$$

Taking logarithms of both sides of $(5-4)$, it will hold if and only if

$$
\begin{equation*}
(1-\beta) \log (1-\alpha)>\log (0.5)=-\log 2 \tag{5-5}
\end{equation*}
$$

or

$$
\begin{equation*}
\beta>1-\frac{\log (0.5)}{\log (1-\alpha)} \tag{5-6}
\end{equation*}
$$

