due: Wednesday November 5 before class

Do all 5 questions. Each counts 20%.

1. Does the following production function exhibit decreasing, constant, or increasing returns to scale? Explain.

$$
f\left(x_{1}, x_{2}, x_{3}\right)=1+x_{1} \log \left(x_{2}+1\right)-\frac{1}{x_{3}+1}
$$

2. Find the cost function $C\left(w_{1}, w_{2}, y\right)$ for the production function

$$
f\left(x_{1}, x_{2}\right)=2-\frac{1}{x_{1}+1}-\frac{1}{x_{2}+1}
$$

3. Find the cost function $C\left(w_{1}, w_{2}, w_{3}, y\right)$ for the production function

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\min \left(x_{1}, x_{2}\right)+x_{3}
$$

4. Find the profit function $\pi\left(p, w_{1}, w_{2}\right)$ for a firm with a production function

$$
f\left(x_{1}, x_{2}\right)=\sqrt{\min \left(x_{1}, x_{2}\right)}
$$

5. What is the equation of the long-run supply curve for a perfectly-competitive industry, in which each of the (many) identical firms has a long run total cost function

$$
T C(q)=q^{3}-24 q^{2}+200 q
$$

where q is the quantity of output produced by the firm?

