$Q 1$. Does the following production function exhibit decreasing, constant, or increasing returns to scale? Explain.

$$
f\left(x_{1}, x_{2}, x_{3}\right)=1+x_{1} \log \left(x_{2}+1\right)-\frac{1}{x_{3}+1}
$$

A1. The marginal products of the three inputs are

$$
\begin{gather*}
f_{1}\left(x_{1}, x_{2}, x_{3}\right)=\log \left(x_{2}+1\right) \tag{1-1}\\
f_{2}\left(x_{1}, x_{2}, x_{3}\right)=\frac{x_{1}}{x_{2}+1} \tag{1-2}\\
f_{3}\left(x_{1}, x_{2}, x_{3}\right)=\frac{1}{\left(1+x_{3}\right)^{2}} \tag{1-3}
\end{gather*}
$$

The "local" measure of scale economies for a production function is $\mu\left(x_{1}, x_{2}, x_{3}\right) \equiv \sum_{i} \mu_{i}\left(x_{1}, x_{2}, x_{3}\right)$ where

$$
\begin{equation*}
\mu_{i}\left(x_{1}, x_{2}, x_{3}\right) \equiv \frac{f_{i}\left(x_{1}, x_{2}, x_{3}\right) x_{i}}{f\left(x_{1}, x_{2}, x_{3}\right)} \quad i=1,2,3 \tag{1-4}
\end{equation*}
$$

So here

$$
\begin{gather*}
\mu_{1}\left(x_{1}, x_{2}, x_{3}\right) f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} \log \left(x_{2}+1\right) \tag{1-5}\\
\mu_{2}\left(x_{1}, x_{2}, x_{3}\right) f\left(x_{1}, x_{2}, x_{3}\right)=\frac{x_{1} x_{2}}{x_{2}+1} \tag{1-6}\\
\mu_{3}\left(x_{1}, x_{2}, x_{3}\right) f\left(x_{1}, x_{2}, x_{3}\right)=\frac{x_{3}}{\left(1+x_{3}\right)^{2}} \tag{1-7}
\end{gather*}
$$

A production exhibits increasing returns to scale locally if and only if $\mu\left(x_{1}, x_{2}, x_{3}\right)>1$. Here

$$
\begin{equation*}
\left[\mu\left(x_{1}, x_{2}, x_{3}\right)-1\right] f\left(x_{1}, x_{2}, x_{3}\right)=\frac{x_{1} x_{2}}{x_{2}+1}-\frac{\left(x_{3}\right)^{2}}{\left(1+x_{3}\right)^{2}} \tag{1-8}
\end{equation*}
$$

The function exhibits increasing (decreasing) returns to scale if and only if expression $(1-8)$ is positive (negative). But depending on the values of x_{1}, x_{2} and x_{3}, expression $(1-8)$ can be positive, negative, or 0 .

For example, if $x_{1}=10, x_{2}=1, x_{3}=1$, then expression $(1-8)$ equals $4.75>0$, so that the production function exhibits irs locally : increasing $\left(x_{1}, x_{2}, x_{3}\right)$ to $\left(a x_{1}, a x_{2}, a x_{3}\right)$ where a is close to, but greater than, 1 , will increase output by a factor greater than a. But if $x_{1}=0.5, x_{2}=0.5, x_{3}=1$, then expression $(1-8)$ equals $-0.0833<0$, so that the production function exhibits drs. (And, for example, if $x_{1}=1, x_{2}=0.333, x_{3}=1$, then $\mu\left(x_{1}, x_{2}, x_{3}\right)=1$, so that the function exhibits locally crs at the point $\left(x_{1}, x_{2}, x_{3}\right)=(1,0.333,1)$ [and at many other points].
$Q 2$. Find the cost function $C\left(w_{1}, w_{2}, y\right)$ for the production function

$$
f\left(x_{1}, x_{2}\right)=2-\frac{1}{x_{1}+1}-\frac{1}{x_{2}+1}
$$

A2. The first-order conditions for cost minimization, that $\mu f_{i}\left(x_{1}, x_{2}\right)=w_{i}($ for $i=1,2)$ can here be written

$$
\begin{align*}
& \mu \frac{1}{\left(x_{1}+1\right)^{2}}=w_{1} \tag{2-1}\\
& \mu \frac{1}{\left(x_{2}+1\right)^{2}}=w_{2} \tag{2-2}
\end{align*}
$$

so that

$$
\begin{equation*}
\left[\frac{\left(1+x_{1}\right)}{\left(1+x_{2}\right)}\right]^{2}=\frac{w_{2}}{w_{1}} \tag{2-3}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
x_{2}=\sqrt{\frac{w_{1}}{w_{2}}}\left(1+x_{1}\right)-1 \tag{2-4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{1+x_{2}}=\sqrt{\frac{w_{2}}{w_{1}}} \frac{1}{x_{1}} \tag{2-5}
\end{equation*}
$$

which means that the quantity $y=f\left(x_{1}, x_{2}\right)$ of output can be written

$$
\begin{equation*}
y=2-\frac{1}{1+x_{1}}-\sqrt{\frac{w_{2}}{w_{1}}} \frac{1}{1+x_{1}} \tag{2-6}
\end{equation*}
$$

or

$$
\begin{equation*}
y=2-\frac{\sqrt{w_{1}}+\sqrt{w_{2}}}{\sqrt{w_{1}}} \frac{1}{1+x_{1}} \tag{2-7}
\end{equation*}
$$

which can be re-arranged into the conditional input demand function for x_{1},

$$
\begin{equation*}
x_{1}\left(w_{1}, w_{2}, y\right)=\frac{\sqrt{w_{1}}+\sqrt{w_{2}}}{\sqrt{w_{1}}} \frac{1}{2-y}-1 \tag{2-8}
\end{equation*}
$$

and (substituting from (2-4))

$$
\begin{equation*}
x_{2}\left(w_{1}, w_{2}, y\right)=\frac{\sqrt{w_{1}}+\sqrt{w_{2}}}{\sqrt{w_{2}}} \frac{1}{2-y}-1 \tag{2-9}
\end{equation*}
$$

The cost function $C\left(w_{1}, w_{2}, y\right)$ is the cost of the inputs, or

$$
\begin{equation*}
C\left(w_{1}, w_{2}, y\right)=w_{1} x_{1}\left(w_{1}, w_{2}, y\right)+w_{2} x_{2}\left(w_{1}, w_{2}, y\right)=\frac{\left[\sqrt{w_{1}}+\sqrt{w_{2}}\right]^{2}}{2-y}-w_{1}-w_{2} \tag{2-10}
\end{equation*}
$$

which also could be written

$$
\begin{equation*}
C\left(w_{1}, w_{2}, y\right)=\frac{\left(w_{1}+w_{2}\right)(y-1)+2 \sqrt{w_{1} w_{2}}}{2-y} \tag{2-11}
\end{equation*}
$$

Q3. Find the cost function $C\left(w_{1}, w_{2}, w_{3}, y\right)$ for the production function

$$
f\left(x_{1}, x_{2}, x_{3}\right)=\min \left(x_{1}, x_{2}\right)+x_{3}
$$

$A 3$. Because the production function combines features of perfect complements and of perfect substitutes, first-order conditions will not be sufficient here.

First, the "perfect complements" feature of the production function implies that $x_{1}(\mathbf{w}, y)=$ $x_{2}(\mathbf{w}, y)$ for any input prices \mathbf{w} and any output level y. The reason? Increasing x_{1} above x_{2} will cost the firm money (if $w_{2}>0$) but will not yield any more output : the marginal product of input 2 is 0 whenever $x_{2}>x_{1}$. Similarly, $M P_{1}=0$ if $x_{1}>x_{2}$.

Now the "perfect substitutes" feature of the production function means that the firm should never use any of input $\# 3$ if $w_{3}>w_{1}+w_{2}$: increasing each of x_{1} and x_{2} by ϵ while reducing x_{3} by ϵ will not change the level of output produced, but will lower costs by $\left[w_{3}-w_{1}-w_{2}\right] \epsilon$. Similarly, it will never be optimal to choose $x_{1}>0$ or $x_{2}>0$ if $w_{1}+w_{2}>w_{3}$.

So the conditional input demands are

$$
\left.\begin{array}{llll}
x_{1}(\mathbf{w}, y)=x_{2}(\mathbf{w}, y)=y & ; & x_{3}(\mathbf{w}, y)=0 & \text { if }
\end{array} w_{1}+w_{2}<w_{3}\right\}
$$

and the conditional input demands are undefined when $w_{1}+w_{2}=w_{3}$ (except that it must be true that $\left.x_{1}(\mathbf{w}, y)=x_{2}(\mathbf{w}, y)=y-x_{3}(\mathbf{w}, y)\right)$.

From equations $(3-1)$ and $(3-2)$, the cost function is

$$
\begin{equation*}
C(\mathbf{w}, y)=\min \left[\left(w_{1}+w_{2}\right) y, w_{3} y\right] \tag{3-3}
\end{equation*}
$$

$Q 4$. Find the profit function $\pi\left(p, w_{1}, w_{2}\right)$ for a firm with a production function

$$
f\left(x_{1}, x_{2}\right)=\sqrt{\min \left(x_{1}, x_{2}\right)}
$$

A4. (As the solution to problem $\# 3$ suggests), in this case, the fact that the two inputs are perfect complements means that the conditional input demands must obey

$$
\begin{equation*}
x_{1}\left(w_{1}, w_{2}, y\right)=x_{2}\left(w_{1}, w_{2}, y\right) \tag{4-1}
\end{equation*}
$$

so that

$$
\begin{equation*}
x_{1}\left(w_{1}, w_{2}, y\right)=y^{2}=x_{2}\left(w_{1}, w_{2}, y\right) \tag{4-2}
\end{equation*}
$$

meaning that

$$
\begin{equation*}
C\left(w_{1}, w_{2}, y\right)=\left(w_{1}+w_{2}\right) y^{2} \tag{4-3}
\end{equation*}
$$

One way of solving the firm's profit maximization problem is to choose an output level y so as to maximize

$$
\begin{equation*}
p y-C\left(w_{1}, w_{2}, y\right) \tag{4-4}
\end{equation*}
$$

In this example, that means the maximization of

$$
\begin{equation*}
p y-\left(w_{1}+w_{2}\right) y^{2} \tag{4-5}
\end{equation*}
$$

with respect to y. The first-order condition for this maximization is

$$
\begin{equation*}
y=\frac{p}{2\left(w_{1}+w_{2}\right)} \tag{4-6}
\end{equation*}
$$

Substituting from $(4-6)$ and $(4-3)$ into $(4-4)$ yields

$$
\begin{equation*}
\pi\left(p, w_{1}, w_{2}\right)=\frac{1}{4} \frac{p^{2}}{w_{1}+w_{2}} \tag{4-7}
\end{equation*}
$$

Q5. What is the equation of the long-run supply curve for a perfectly-competitive industry, in which each of the (many) identical firms has a long run total cost function

$$
T C(q)=q^{3}-24 q^{2}+200 q
$$

where q is the quantity of output produced by the firm?
A5. Since the long-run total cost function is

$$
T C(q)=q^{3}-24 q^{2}+200 q
$$

then a firm's long-run marginal cost and average cost functions are

$$
\begin{align*}
M C(q) & =T C^{\prime}(q)=3 q^{2}-48 q+200 \tag{2-1}\\
A C(q) & =\frac{T C(q)}{q}=q^{2}-24 q+200 \tag{2-2}
\end{align*}
$$

Differentiating yet again,

$$
\begin{align*}
M C^{\prime}(q) & =6 q-48 \tag{2-3}\\
A C^{\prime}(q) & =2 q-24 \tag{2-4}
\end{align*}
$$

From equations $(2-3)$ and $(2-4)$ both the marginal and average cost curves are U-shaped, with minima at $q=8$ and $q=12$ respectively. When $q=12$,

$$
\begin{gather*}
M C(q)=3\left(12^{2}\right)-48(12)+200=56 \tag{2-5}\\
A C(q)=144-24(12)+200=56 \tag{2-6}
\end{gather*}
$$

confirming that the $A C$ and $M C$ curves cross at the bottom of the $A C$ curve.
With identical firms in perfect competition, in the long run it must be the case that $p=M C$ if firms each maximize their profits, and that $p=A C$ if there is free entry and exit. The only quantity q for which $M C=A C$ is the bottom of each firm's $A C$ curve, $q=12$.

Thus, in the long-run, the price must be 56 , and each firm in the industry must produce 12 units of output. The industry long-run curve is horizontal, at a height of $p=56$.

