Do all 5 questions. Each counts 20%.

1. Suppose that the aggregate demand curve by men for some good has the equation

$$
Q^{M}=\frac{100}{p^{2}}
$$

where Q^{M} is the aggregate quantity demanded by men, and p the price they pay. The aggregate demand curve of women, for the same product, is

$$
Q^{W}=\frac{100}{p^{3}}
$$

where Q^{W} is the aggregate quantity demanded by women.
A monopoly is able to supply the good at a constant marginal cost of $M C=1$ (in unlimited quantities). Compare the price paid by men, and the price paid by women in the following two situations:
(i) The monopoly can charge different prices to men and women (who are not able to resell the good).
(ii) The monopoly must charge the same price to all buyers.
2. In a duopoly, suppose that each firm has the same production technology : if they pay a fixed cost of $F>0$, they can produce as much output as they wish, at a marginal cost of zero. (So the total cost of producing $q>0$ units is a constant F, whereas the cost of producing nothing is zero.)

If the market demand curve has the equation

$$
Q^{d}=B-p
$$

what are the equilibria if the firms behave as Cournot duopolists, choosing quantities simultaneously and non-cooperatively?
3. Another model of duopoly is that of von Stackelberg, in which firms choose output levels sequentially. That is, firm 1 chooses its output first, and cannot change its output after it has made its choice. Firm 2 then observes what output level firm 1 has chosen, and then chooses its own output level. What output levels would the 2 firms choose, if they behaved in this manner, if the demand and technology were as in question $\# 2$ above, with $F=10$ and $B=12$?
4. What does the contract curve look like for a 2 -person, 2 -good exchange economy, with a total endowment of A units of good 1 and B units of good 2 , if the preferences of the two people could be represented by the utility functions

$$
\begin{aligned}
& u^{1}\left(x_{1}^{1}, x_{2}^{1}\right)=\left(x_{1}^{1}\right)^{3}\left(x_{2}^{1}\right)^{6} \\
& u^{2}\left(x_{1}^{2}, x_{2}^{2}\right)=\left(x_{1}^{2}\right)^{4}\left(x_{2}^{2}\right)^{2}
\end{aligned}
$$

where x_{j}^{i} is person i 's consumption of good j ?
5. What are the allocations in the core of the following 3 -person, $2-\operatorname{good}$ economy?

Person 1 regards the two goods as perfect substitutes.
Person 2 and person 3 regard the two goods as perfect complements.
The endowments of the three people are $\mathbf{e}^{1}=(3,0), \mathbf{e}^{2}=(3,0), \mathbf{e}^{3}=(0,6)$.

