due: Wednesday November 25 before class

Do all 5 questions. Each counts 20%.

1. Another model of duopoly is that of von Stackelberg, in which firms choose output levels sequentially. That is, firm 1 chooses its output quantity first, and cannot change that quantity after it has made its choice. Next, firm 2 observes what quantity firm 1 has chosen, and then chooses its own output quantity. What quantities would the 2 firms choose, if they behaved in this manner, if the cost of production (for each firm) were 0 , and if the aggregate demand for the firms' homogeneous product were

$$
Q=12-p
$$

(where p is the market price, and Q the aggregate quantity demanded)?
2. Solve for the equilibrium quantities in a 3-firm Stackelberg model, with the demand and cost functions from question \#1 above.
[That is, firm 1 commits first to its quantity q_{1}. Firm 2 observes q_{1}, and then commits to its own quantity q_{2}. Finally firm 3 observes q_{1} and q_{2}, and then chooses its profit-maximizing output quantity q_{3}.]
3. What does the contract curve look like for a 2 -person, 2 -good exchange economy, with a total endowment of A units of good 1 and B units of good 2, if the preferences of the two people could be represented by the utility functions

$$
\begin{aligned}
& u^{1}\left(x_{1}^{1}, x_{2}^{1}\right)=1-\frac{1}{x_{1}^{1}}-\frac{1}{x_{2}^{1}} \\
& u^{2}\left(x_{1}^{2}, x_{2}^{2}\right)=\log \left(x_{1}^{2}\right)+x_{2}^{2}
\end{aligned}
$$

where x_{j}^{i} is person i 's consumption of good j ?
4. What are the allocations in the core of the following 3 -person, 2 -good economy? Person i 's preferences can be represented by the utility function $u^{i}\left(x_{1}^{i}, x_{2}^{i}\right)$, where

$$
\begin{gathered}
u^{1}\left(x_{1}^{1}, x_{2}^{1}\right)=x_{1}^{1} \\
u^{2}\left(x_{1}^{2}, x_{2}^{2}\right)=x_{1}^{2} x_{2}^{2} \\
u^{3}\left(x_{1}^{3}, x_{2}^{3}\right)=x_{2}^{3}
\end{gathered}
$$

and the endowment vectors of the three people are $\mathbf{e}^{1}=(0,4), \mathbf{e}^{2}=(4,0), \mathbf{e}^{3}=(2,2)$.
5. Find a competitive equilibrium to a 2-good, 3-million-person economy, in which 1 million people have preferences and endowments like person 1 in the previous question (\#4), 1 million people have preferences and endowments like person 2 in the previous question, and 1 million people have preferences and endowments like person 3 in the previous question. [That is, find a competitive equilibrium to an economy which is the economy of question \#4 cloned one million times.]

