due: Monday October $23 \quad 3: 00 \mathrm{pm}$
Do all 5 questions. Each counts 20%.

1. Could the following three functions be Marshallian demand functions for a consumer with well-behaved preferences? Explain briefly.

$$
\begin{gathered}
x_{1}(\mathbf{p}, y)=\frac{y}{p_{1}}-\sqrt{\frac{p_{2}}{p_{1}}}-\sqrt{\frac{p_{3}}{p_{1}}} \\
x_{2}(\mathbf{p}, y)=\sqrt{\frac{p_{1}}{p_{2}}} \\
x_{3}(\mathbf{p}, y)=\sqrt{\frac{p_{1}}{p_{3}}}
\end{gathered}
$$

2. Find all the violations of the strong and weak axioms of revealed preference in the following table, which indicates the prices p^{t} of three different commodities at four different times, and the quantities x^{t} of the 3 goods chosen at the four different times. (For example, the third row indicates that the consumer chose the bundle $\mathbf{x}=(25,15,10)$ when the price vector was $\mathbf{p}=(3,1,1)$.)

t	p_{1}^{t}	p_{2}^{t}	p_{3}^{t}	x_{1}^{t}	x_{2}^{t}	x_{3}^{t}
1	1	1	3	20	20	10
2	2	1	2	30	10	20
3	3	1	1	25	15	10
4	1	3	1	20	15	20

3. If a risk-averse utility maximizer had a utility-of-wealth function

$$
u(W)=\log W
$$

what would be the risk premium to a gamble which would double her wealth with probability 0.5 , and cut her wealth in half with probability 0.5 ?
4. Find a utility function $U(\cdot)$ such that the following statement would be true for an expected utility maximizer with this utility function : "If my initial wealth was 100 , I would not make this investment, but if my initial wealth were 200 I would make the investment. The investment will decrease my wealth by 40 with probability 0.5 , and increase my wealth by 50 with probability 0.5 ."
question 5 is on the next page
5. How would the tax rate t on capital gains affect the following [risk-averse, von NeumannMorganstern expected utility maximizing] person's behaviour?

The person has an initial wealth of W. She chooses how much of that wealth to invest in a stock. The stock will either succeed or fail.

If the stock succeeds, she will make a gain of G dollars per dollar invested (so that if she had invested x dollars in the stock, the investment would now be worth $(G+1) x$ dollars.)

If the stock fails, it is worthless.
The probability of success for the stock is π.
Any money which she does not invest in the stock earns a net return of zero. (So that the $W-x$ dollars she does not invest in the stock will still be worth $W-x$, for certain.)

She must pay a tax of t dollars for every dollar of capital gains, but gets a tax credit of t dollars for every dollar she loses in the stock market.

