
GS/ECON 5010 Answers to Assignment 2 October 2017

Q1. Could the following three functions be Marshallian demand functions for a consumer with

well–behaved preferences? Explain briefly.

x1(p, y) =
y

p1
−

√
p2
p1
−

√
p3
p1

x2(p, y) =

√
p1
p2

x3(p, y) =

√
p1
p3

A2. From the “Integrability Theorem” (theorem 2.6 in Jehle and Reny), these three functions

represent a system of Marshallian demand functions if and only if they obey “budget balance”, and

the substitution matrix corresponding to these functions is symmetric and negative semi-definite.

To check budget balance,

p1x1(p, y) + p2x2(p, y) + p3x3(p, y) = y1 −
√
p1p2 −

√
p1p3 +

√
p1p2 +

√
p1p3 = y (1− 1)

so that
∑
i pixi(p, y) = y and budget balance is satisfied.

From the Slutsky equation, the elements Sij of the substitution matrix are defined as

Sij =
∂xi
∂pj

+ xj(p, y)
∂xi
∂y

(1− 2)

So

S11 = − y

(p1)2
+ (0.5)(p1)−1.5(p2)0.5 + (0.5)(p1)−1.5(p3)0.5 +

y

(p1)2
− (p1)−1.5p0.52 − (p1)−1.5(p3)0.5

or

S11 = −(0.5)(p1)−1.5[(p2)0.5 + (p3)0.5] < 0 (1− 3)

S12 = −(0.5)(p1p2)−0.5 + (p1)0.5p−0.52 [
1

p1
] = (0.5)(p1p2)−0.5 > 0 (1− 4)

S13 = −(0.5)(p1p3)−0.5 + (p1)0.5p−0.53 [
1

p1
] = (0.5)(p1p3)−0.5 > 0 (1− 5)

S21 = (0.5)(p1p2)−0.5 > 0 (1− 6)

S22 = −(0.5)(p1)0.5(p2)−1.5 < 0 (1− 7)

S23 = 0 (1− 8)

S31 = (0.5)(p1p3)−0.5 > 0 (1− 9)
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S32 = 0 (1− 10)

S33 = −(0.5)(p1)0.5(p3)−1.5 < 0 (1− 11)

Equations (1 − 4) and (1 − 6), (1 − 5) and (1 − 9), and (1 − 8) and (1 − 10) show that the

substitution matrix is symmetric.

It remains to check whether that matrix is negative semi–definite. Equations (1− 3), (1− 7)

and (1 − 11) show that elements on the diagonal are negative. The determinant of the 2–by–2

matrix in the upper left–hand corner is

S11S22 − S12S21 = (0.25)[(p1)−1(p2)−1.5[(p2)0.5 + (p3)0.5]− (p1)−1p−12

=(0.25)[(p1)−1(p2)−1.5(p3)0.5] > 0

[So the second principal minor has a positive determinant.]

And the determinant of the whole matrix is

detS = S11S22S33 − S33[(S12)2]− S22[(S13)2]

so that
8 detS = −(p1)−0.5(p2)−1(p3)−1.5 − (p1)−0.5(p2)−1.5(p3)−1

+ (p1)−0.5(p2)−1(p3)−1.5 + (p1)−0.5(p2)−1.5(p3)−1

which equals 0.

So the substitution matrix is negative semi–definite (since its three principal minors are neg-

ative, positive and zero in sign).

All 3 conditions in the Integrability Theorem are satisfied, so that the three functions could

be Marshallian demand functions of a consumer with well–behaved preferences.

Q2. Find all the violations of the strong and weak axioms of revealed preference in the following

table, which indicates the prices pt of three different commodities at four different times, and the

quantities xt of the 3 goods chosen at the four different times. (For example, the third row indicates

that the consumer chose the bundle x = (25, 15, 10) when the price vector was p = (3, 1, 1).)

t pt1 pt2 pt3 xt1 xt2 xt3

1 1 1 3 20 20 10
2 2 1 2 30 10 20
3 3 1 1 25 15 10
4 1 3 1 20 15 20

A2. The following matrix displays the cost of each bundle at each year’s prices.

year x1 x2 x3 x4

year 1 70 100 70 95
year 2 80 110 85 95
year 3 90 120 100 95
year 4 90 80 80 85
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(So, for example, the 85 in the 3rd column of the second row indicates that the bundle x3

chosen in year 3 would have cost $85 in year 2, which is less than the cost of the bundle actually

chosen in that year, which was $110.)

Whenever a number on the diagonal of row i is greater than or equal to another element Mij

in that row, that means that xi is revealed preferred (directly) to the bundle xj chosen in year j.

The first row shows x1 is revealed preferred directly to x3.

The second row shows that x2 is revealed preferred directly to each of the other three bundles.

The third row shows that x3 is revealed preferred directly to x1 and x4.

The fourth row shows that x4 is revealed preferred directly to x2 and x3.

So there are 3 violations of WARP : year 1’s bundle versus year 3’s ; year 2’s bundle versus

year 4’s ; year 3’s bundle versus year 4’s.

But, in a sense, every possible comparison violates SARP . For every one of the 6 pairs of

years, there is a cycle.

For example, x1 is directly revealed preferred to x3 which is directly revealed preferred to

x4 which is directly revealed preferred to x2 which is directly revealed preferred to x1. Or x2 is

directly revealed preferred to x1 which is directly revealed preferred to x4 which is directly revealed

preferred to x2. Or x2 is directly revealed preferred to x3 which is directly revealed preferred to

x4 which is directly revealed preferred to x2.

Q3. If a risk–averse utility maximizer had a utility–of–wealth function

u(W ) = logW

what would be the risk premium to a gamble which would double her wealth with probability 0.5,

and cut her wealth in half with probability 0.5?

A3. The certainty equivalent CE to the gamble is the solution to the equation

U(CE) = 0.5U(W/2) + 0.5U(2W ) (3− 1)

since she should be indifferent between getting CE for sure, and a gamble which gives her W/2

with probability 0.5 and 2W with probability 0.5. In this case, equation (3− 1) is

log (CE) = 0.5 log (
W

2
) + 0.5 log (2W ) (3− 2)

Since log (ab) = log a+ log b, equation (3− 2) can be written

log (CE) = 0.5[logW + log (
1

2
) + log 2 + logW ] (3− 3)

But log 2 + log ( 1
2 ) = 0, since log a+ log b = log (ab), and since log 1 = 0. So

logCE = 0.5[2 logW ] = logW (3− 4)
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which means that CE = W .

The risk premium to the gamble is equal to the difference between the expected value Eg of

her wealth (from the gamble), and the certainty equivalent.

Here

Eg = 0.5[
W

2
+ 2W ] =

5W

4
(3− 5)

so that the risk premium equals

Eg − CE =
W

4

Q4. Find a utility function U(·) such that the following statement would be true for an

expected utility maximizer with this utility function : “If my initial wealth was 100, I would

not make this investment, but if my initial wealth were 200 I would make the investment. The

investment will decrease my wealth by 40 with probability 0.5, and increase my wealth by 50 with

probability 0.5.”

A4. Notice that this statement could be true for a person with a constant coefficient of

relative risk aversion : any person with CRRA preferences would be more willing to undertake a

risky investment, with given absolute size, if her initial wealth were higher.

So, if a person had a constant coefficient of relative risk aversion β, the statement would be

true if
1

1− β
(0.5)[(150)1−β + (60)1−β ] < 2

1

1− β
[(100)1−β ] (4− 1)

and if
1

1− β
(0.5)[(250)1−β + (160)1−β ] > 2

1

1− β
[(200)1−β ] (4− 2)

Equation (1) holds whenever β > 0.493558, and equation (2) holds whenever β < 1.

So an example — but certainly not the only one — of a utility–of–wealth function which

satisfies the 2 conditions is

U(W ) =
1

1− β
W 1−β

for which 0.493558 < β < 1.

Q5. How would the tax rate t on capital gains affect the following [risk–averse, von Neumann–

Morgenstern expected utility maximizing] person’s behaviour?

The person has an initial wealth of W . She chooses how much of that wealth to invest in a

stock. The stock will either succeed or fail.

If the stock succeeds, she will make a gain of G dollars per dollar invested (so that if she had

invested x dollars in the stock, the investment would now be worth (G+ 1)x dollars.)

If the stock fails, it is worthless.

The probability of success for the stock is π.
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Any money which she does not invest in the stock earns a net return of zero. (So that the

W − x dollars she does not invest in the stock will still be worth W − x, for certain.)

She must pay a tax of t dollars for every dollar of capital gains, but gets a tax credit of t

dollars for every dollar she loses in the stock market.

A5. [This question is a version of a result obtained by Domar and Musgrave (QJE, 1944) on

the effects of taxation on risk taking.]

If the tax rate is t, and if the person invests x dollars in the risky asset, then her expected

utility will be

EU = πu[(G+ 1)x− tGx+W − x] + (1− π)U [W − x+ tx] (5− 1)

since she must pay taxes of tGx on her capital gains if the stock goes up, and she gets a tax credit

of tx if her initial investment of x dollars becomes worthless.

She should choose the investment x in the risky asset to maximize expression (5− 1). So her

first–order condition for this maximization (with respect to what she is choosing, the amount x to

invest in the risky asset) is

π[G(1− t)]u′[Gx(1− t) +W ]− (1− π)(1− t)u′[W − (1− t)x] = 0 (5− 2)

Concavity of her utility–of–wealth function (she is risk–averse) ensures that the second–order con-

ditions for utility maximization are satisfied : for a given tax rate t there is a unique x which solves

equation (5− 2), and that x maximizes her expected utility.

Equation (5− 2) can be written

πGu′[Gx(1− t) +W ]− (1− π)u′[W − (1− t)x] = 0 (5− 3)

or

πGu′[Gz +W ]− (1− π)u′(W − z) = 0 (5− 4)

where

z ≡ (1− t)x

So let z∗ be the (unique) solution to equation (5− 4). This z∗ does not depend on the tax rate t :

that tax rate does not appear in equation (5− 4). The person’s actual optimal investment in the

risky asset is

x∗(t) ≡ z∗/(1− t) (5− 5)

What happens when the tax rate t increases? Equation (5− 5) says that increases in the tax rate

lead to increases in x, enough so that the “net of tax” investment (1 − t)x stays constant (and

equal to z∗).

So — when there is full “loss offset” — increases in the tax rate on the return to risky assets

actually increases risk taking by investors.
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By taxing the positive return, and offering a tax write–of for the negative return, the tax

authority has cut itself in as a partner in the risky investment, and has made the (after–tax)

return on the asset less risky. The investor responds to this “partnership” by increasing her own

investment in the risky asset, so that her net–of–tax return (in either the good or the bad state)

is unchanged.
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