Q1. Could the following three functions be Marshallian demand functions for a consumer with well-behaved preferences? Explain briefly.

$$
\begin{gathered}
x_{1}(\mathbf{p}, y)=\frac{y}{p_{1}}-\sqrt{\frac{p_{2}}{p_{1}}}-\sqrt{\frac{p_{3}}{p_{1}}} \\
x_{2}(\mathbf{p}, y)=\sqrt{\frac{p_{1}}{p_{2}}} \\
x_{3}(\mathbf{p}, y)=\sqrt{\frac{p_{1}}{p_{3}}}
\end{gathered}
$$

A2. From the "Integrability Theorem" (theorem 2.6 in Jehle and Reny), these three functions represent a system of Marshallian demand functions if and only if they obey "budget balance", and the substitution matrix corresponding to these functions is symmetric and negative semi-definite.

To check budget balance,

$$
p_{1} x_{1}(\mathbf{p}, y)+p_{2} x_{2}(\mathbf{p}, y)+p_{3} x_{3}(\mathbf{p}, y)=y_{1}-\sqrt{p_{1} p_{2}}-\sqrt{p_{1} p_{3}}+\sqrt{p_{1} p_{2}}+\sqrt{p_{1} p_{3}}=y \quad(1-1)
$$

so that $\sum_{i} p_{i} x_{i}(\mathbf{p}, y)=y$ and budget balance is satisfied.
From the Slutsky equation, the elements $S_{i j}$ of the substitution matrix are defined as

$$
\begin{equation*}
S_{i j}=\frac{\partial x_{i}}{\partial p_{j}}+x_{j}(\mathbf{p}, y) \frac{\partial x_{i}}{\partial y} \tag{1-2}
\end{equation*}
$$

So

$$
S_{11}=-\frac{y}{\left(p_{1}\right)^{2}}+(0.5)\left(p_{1}\right)^{-1.5}\left(p_{2}\right)^{0.5}+(0.5)\left(p_{1}\right)^{-1.5}\left(p_{3}\right)^{0.5}+\frac{y}{\left(p_{1}\right)^{2}}-\left(p_{1}\right)^{-1.5} p_{2}^{0.5}-\left(p_{1}\right)^{-1.5}\left(p_{3}\right)^{0.5}
$$

or

$$
\begin{gather*}
S_{11}=-(0.5)\left(p_{1}\right)^{-1.5}\left[\left(p_{2}\right)^{0.5}+\left(p_{3}\right)^{0.5}\right]<0 \tag{1-3}\\
S_{12}=-(0.5)\left(p_{1} p_{2}\right)^{-0.5}+\left(p_{1}\right)^{0.5} p_{2}^{-0.5}\left[\frac{1}{p_{1}}\right]=(0.5)\left(p_{1} p_{2}\right)^{-0.5}>0 \tag{1-4}\\
S_{13}=-(0.5)\left(p_{1} p_{3}\right)^{-0.5}+\left(p_{1}\right)^{0.5} p_{3}^{-0.5}\left[\frac{1}{p_{1}}\right]=(0.5)\left(p_{1} p_{3}\right)^{-0.5}>0 \tag{1-5}\\
S_{21}=(0.5)\left(p_{1} p_{2}\right)^{-0.5}>0 \tag{1-6}\\
S_{22}=-(0.5)\left(p_{1}\right)^{0.5}\left(p_{2}\right)^{-1.5}<0 \tag{1-7}\\
S_{23}=0 \tag{1-8}\\
S_{31}=(0.5)\left(p_{1} p_{3}\right)^{-0.5}>0 \tag{1-9}
\end{gather*}
$$

$$
\begin{gather*}
S_{32}=0 \tag{1-10}\\
S_{33}=-(0.5)\left(p_{1}\right)^{0.5}\left(p_{3}\right)^{-1.5}<0 \tag{1-11}
\end{gather*}
$$

Equations $(1-4)$ and $(1-6),(1-5)$ and $(1-9)$, and $(1-8)$ and $(1-10)$ show that the substitution matrix is symmetric.

It remains to check whether that matrix is negative semi-definite. Equations $(1-3),(1-7)$ and $(1-11)$ show that elements on the diagonal are negative. The determinant of the 2 -by- 2 matrix in the upper left-hand corner is

$$
\begin{gathered}
S_{11} S_{22}-S_{12} S_{21}=(0.25)\left[\left(p_{1}\right)^{-1}\left(p_{2}\right)^{-1.5}\left[\left(p_{2}\right)^{0.5}+\left(p_{3}\right)^{0.5}\right]-\left(p_{1}\right)^{-1} p_{2}^{-1}\right. \\
=(0.25)\left[\left(p_{1}\right)^{-1}\left(p_{2}\right)^{-1.5}\left(p_{3}\right)^{0.5}\right]>0
\end{gathered}
$$

[So the second principal minor has a positive determinant.]
And the determinant of the whole matrix is

$$
\operatorname{det} S=S_{11} S_{22} S_{33}-S_{33}\left[\left(S_{12}\right)^{2}\right]-S_{22}\left[\left(S_{13}\right)^{2}\right]
$$

so that

$$
\begin{aligned}
8 \operatorname{det} S & =-\left(p_{1}\right)^{-0.5}\left(p_{2}\right)^{-1}\left(p_{3}\right)^{-1.5}-\left(p_{1}\right)^{-0.5}\left(p_{2}\right)^{-1.5}\left(p_{3}\right)^{-1} \\
& +\left(p_{1}\right)^{-0.5}\left(p_{2}\right)^{-1}\left(p_{3}\right)^{-1.5}+\left(p_{1}\right)^{-0.5}\left(p_{2}\right)^{-1.5}\left(p_{3}\right)^{-1}
\end{aligned}
$$

which equals 0 .
So the substitution matrix is negative semi-definite (since its three principal minors are negative, positive and zero in sign).

All 3 conditions in the Integrability Theorem are satisfied, so that the three functions could be Marshallian demand functions of a consumer with well-behaved preferences.

Q2. Find all the violations of the strong and weak axioms of revealed preference in the following table, which indicates the prices p^{t} of three different commodities at four different times, and the quantities x^{t} of the 3 goods chosen at the four different times. (For example, the third row indicates that the consumer chose the bundle $\mathbf{x}=(25,15,10)$ when the price vector was $\mathbf{p}=(3,1,1)$.)

t	p_{1}^{t}	p_{2}^{t}	p_{3}^{t}	x_{1}^{t}	x_{2}^{t}	x_{3}^{t}
1	1	1	3	20	20	10
2	2	1	2	30	10	20
3	3	1	1	25	15	10
4	1	3	1	20	15	20

A2. The following matrix displays the cost of each bundle at each year's prices.

year		\mathbf{x}^{1}	\mathbf{x}^{2}	\mathbf{x}^{3}	\mathbf{x}^{4}
year	1	70	100	70	95
year	2	80	110	85	95
year	3	90	120	100	95
year	4	90	80	80	85

(So, for example, the 85 in the 3 rd column of the second row indicates that the bundle \mathbf{x}^{3} chosen in year 3 would have cost $\$ 85$ in year 2 , which is less than the cost of the bundle actually chosen in that year, which was $\$ 110$.)

Whenever a number on the diagonal of row i is greater than or equal to another element $M_{i j}$ in that row, that means that \mathbf{x}^{i} is revealed preferred (directly) to the bundle \mathbf{x}^{j} chosen in year j.

The first row shows \mathbf{x}^{1} is revealed preferred directly to \mathbf{x}^{3}.
The second row shows that \mathbf{x}^{2} is revealed preferred directly to each of the other three bundles.
The third row shows that \mathbf{x}^{3} is revealed preferred directly to \mathbf{x}^{1} and \mathbf{x}^{4}.
The fourth row shows that \mathbf{x}^{4} is revealed preferred directly to \mathbf{x}^{2} and \mathbf{x}^{3}.
So there are 3 violations of $W A R P$: year 1's bundle versus year 3's ; year 2's bundle versus year 4's ; year 3's bundle versus year 4's.

But, in a sense, every possible comparison violates $S A R P$. For every one of the 6 pairs of years, there is a cycle.

For example, \mathbf{x}^{1} is directly revealed preferred to \mathbf{x}^{3} which is directly revealed preferred to \mathbf{x}^{4} which is directly revealed preferred to \mathbf{x}^{2} which is directly revealed preferred to \mathbf{x}^{1}. Or \mathbf{x}^{2} is directly revealed preferred to \mathbf{x}^{1} which is directly revealed preferred to \mathbf{x}^{4} which is directly revealed preferred to \mathbf{x}^{2}. Or \mathbf{x}^{2} is directly revealed preferred to \mathbf{x}^{3} which is directly revealed preferred to \mathbf{x}^{4} which is directly revealed preferred to \mathbf{x}^{2}.

Q3. If a risk-averse utility maximizer had a utility-of-wealth function

$$
u(W)=\log W
$$

what would be the risk premium to a gamble which would double her wealth with probability 0.5 , and cut her wealth in half with probability 0.5 ?

A3. The certainty equivalent $C E$ to the gamble is the solution to the equation

$$
\begin{equation*}
U(C E)=0.5 U(W / 2)+0.5 U(2 W) \tag{3-1}
\end{equation*}
$$

since she should be indifferent between getting $C E$ for sure, and a gamble which gives her $W / 2$ with probability 0.5 and $2 W$ with probability 0.5 . In this case, equation $(3-1)$ is

$$
\begin{equation*}
\log (C E)=0.5 \log \left(\frac{W}{2}\right)+0.5 \log (2 W) \tag{3-2}
\end{equation*}
$$

Since $\log (a b)=\log a+\log b$, equation $(3-2)$ can be written

$$
\begin{equation*}
\log (C E)=0.5\left[\log W+\log \left(\frac{1}{2}\right)+\log 2+\log W\right] \tag{3-3}
\end{equation*}
$$

But $\log 2+\log \left(\frac{1}{2}\right)=0$, since $\log a+\log b=\log (a b)$, and since $\log 1=0$. So

$$
\begin{equation*}
\log C E=0.5[2 \log W]=\log W \tag{3-4}
\end{equation*}
$$

which means that $C E=W$.
The risk premium to the gamble is equal to the difference between the expected value $E g$ of her wealth (from the gamble), and the certainty equivalent.

Here

$$
\begin{equation*}
E g=0.5\left[\frac{W}{2}+2 W\right]=\frac{5 W}{4} \tag{3-5}
\end{equation*}
$$

so that the risk premium equals

$$
E g-C E=\frac{W}{4}
$$

Q4. Find a utility function $U(\cdot)$ such that the following statement would be true for an expected utility maximizer with this utility function : "If my initial wealth was 100 , I would not make this investment, but if my initial wealth were 200 I would make the investment. The investment will decrease my wealth by 40 with probability 0.5 , and increase my wealth by 50 with probability 0.5."

A4. Notice that this statement could be true for a person with a constant coefficient of relative risk aversion : any person with CRRA preferences would be more willing to undertake a risky investment, with given absolute size, if her initial wealth were higher.

So, if a person had a constant coefficient of relative risk aversion β, the statement would be true if

$$
\begin{equation*}
\frac{1}{1-\beta}(0.5)\left[(150)^{1-\beta}+(60)^{1-\beta}\right]<2 \frac{1}{1-\beta}\left[(100)^{1-\beta}\right] \tag{4-1}
\end{equation*}
$$

and if

$$
\begin{equation*}
\frac{1}{1-\beta}(0.5)\left[(250)^{1-\beta}+(160)^{1-\beta}\right]>2 \frac{1}{1-\beta}\left[(200)^{1-\beta}\right] \tag{4-2}
\end{equation*}
$$

Equation (1) holds whenever $\beta>0.493558$, and equation (2) holds whenever $\beta<1$.
So an example - but certainly not the only one - of a utility-of-wealth function which satisfies the 2 conditions is

$$
U(W)=\frac{1}{1-\beta} W^{1-\beta}
$$

for which $0.493558<\beta<1$.

Q5. How would the tax rate t on capital gains affect the following [risk-averse, von NeumannMorgenstern expected utility maximizing] person's behaviour?

The person has an initial wealth of W. She chooses how much of that wealth to invest in a stock. The stock will either succeed or fail.

If the stock succeeds, she will make a gain of G dollars per dollar invested (so that if she had invested x dollars in the stock, the investment would now be worth $(G+1) x$ dollars.)

If the stock fails, it is worthless.
The probability of success for the stock is π.

Any money which she does not invest in the stock earns a net return of zero. (So that the $W-x$ dollars she does not invest in the stock will still be worth $W-x$, for certain.)

She must pay a tax of t dollars for every dollar of capital gains, but gets a tax credit of t dollars for every dollar she loses in the stock market.

A5. [This question is a version of a result obtained by Domar and Musgrave (QJE, 1944) on the effects of taxation on risk taking.]

If the tax rate is t, and if the person invests x dollars in the risky asset, then her expected utility will be

$$
\begin{equation*}
E U=\pi u[(G+1) x-t G x+W-x]+(1-\pi) U[W-x+t x] \tag{5-1}
\end{equation*}
$$

since she must pay taxes of $t G x$ on her capital gains if the stock goes up, and she gets a tax credit of $t x$ if her initial investment of x dollars becomes worthless.

She should choose the investment x in the risky asset to maximize expression $(5-1)$. So her first-order condition for this maximization (with respect to what she is choosing, the amount x to invest in the risky asset) is

$$
\begin{equation*}
\pi[G(1-t)] u^{\prime}[G x(1-t)+W]-(1-\pi)(1-t) u^{\prime}[W-(1-t) x]=0 \tag{5-2}
\end{equation*}
$$

Concavity of her utility-of-wealth function (she is risk-averse) ensures that the second-order conditions for utility maximization are satisfied : for a given tax rate t there is a unique x which solves equation $(5-2)$, and that x maximizes her expected utility.

Equation (5-2) can be written

$$
\begin{equation*}
\pi G u^{\prime}[G x(1-t)+W]-(1-\pi) u^{\prime}[W-(1-t) x]=0 \tag{5-3}
\end{equation*}
$$

or

$$
\begin{equation*}
\pi G u^{\prime}[G z+W]-(1-\pi) u^{\prime}(W-z)=0 \tag{5-4}
\end{equation*}
$$

where

$$
z \equiv(1-t) x
$$

So let z^{*} be the (unique) solution to equation (5-4). This z^{*} does not depend on the tax rate t : that tax rate does not appear in equation $(5-4)$. The person's actual optimal investment in the risky asset is

$$
\begin{equation*}
x^{*}(t) \equiv z^{*} /(1-t) \tag{5-5}
\end{equation*}
$$

What happens when the tax rate t increases? Equation (5-5) says that increases in the tax rate lead to increases in x, enough so that the "net of tax" investment $(1-t) x$ stays constant (and equal to z^{*}).

So - when there is full "loss offset" - increases in the tax rate on the return to risky assets actually increases risk taking by investors.

By taxing the positive return, and offering a tax write-of for the negative return, the tax authority has cut itself in as a partner in the risky investment, and has made the (after-tax) return on the asset less risky. The investor responds to this "partnership" by increasing her own investment in the risky asset, so that her net-of-tax return (in either the good or the bad state) is unchanged.

