Do all 5 questions. Each counts 20%.

1. For what input levels $\left(x_{1}, x_{2}, x_{3}\right)$ does the following production function exhibit increasing returns to scale (using the "local" measure $\mu(\mathbf{x})$ of scale economies)?

$$
f(\mathbf{x}) \equiv\left[x_{1} x_{2}\right]^{\alpha} \frac{x_{3}}{1+x_{3}}
$$

where $\alpha>0$.
2. Derive the cost function for the production function

$$
f\left(x_{1}, x_{2}\right)=\log \left(x_{1}+1\right)+\log \left(x_{2}+1\right)-\log \left(x_{1}+x_{2}+2\right)+\log 2
$$

3. What are total industry profits (as a function of the price p in long-run equilibrium in the following perfectly competitive industry?

A type- t firm has a total cost function, as a function of the firm's output q of

$$
C_{i}(q)=\frac{1}{2} q^{2}+A t
$$

where A is a positive constant.
There is a continuum of firms. Firms differ in their type t : this type is distributed uniformly over $[0,1]$. The total "number" of firms (that is the measure of all firms of all types) is some finite M.
[So half the firms have a value of t between 0 and 0.5 , a quarter of the firms have a value of t between 0 and 0.25 , etc.]
(questions \#4 and \#5 on the next page)
4. What is the equilibrium when two firms choose quantities simultaneously (that is, in a Cournot duopoly) if the market demand function for the firms' identical products was

$$
p=A-Q
$$

where $Q \equiv q_{1}+q_{2}$ is the combined output of the two firms, when firm 1's total cost function is

$$
T C_{1}\left(q_{1}\right)=q_{1}
$$

and firm 2's total cost function is

$$
T C_{2}\left(q_{2}\right)=q_{2}+4 \quad \text { if } \quad q_{2}>0 \quad ; \quad T C_{2}(0)=0
$$

where A is some positive constant? [So firm 2 has a fixed cost of 4 , which it can avoid only by producing nothing.]
5. Find a symmetric Bertrand equilibrium, when two firms produce goods which are close (but imperfect) substitutes, with each firm i facing a demand curve

$$
q_{i}=\frac{p_{i}^{-\alpha-1}}{p_{i}^{-\alpha}+p_{j}^{-\alpha}}
$$

where p_{j} is the other firm's price, when each firm has a constant marginal cost c.
The parameter α is positive (and equals $\sigma-1$, where σ is buyers' elasticity of substitution between the 2 goods).

