
GS/ECON 5010 Answers to Assignment 3 November 2017

Q1. For what input levels (x1, x2, x3) does the following production function exhibit increasing

returns to scale (using the “local” measure µ(x) of scale economies)?

f(x) ≡ [x1x2]α
x3

1 + x3

where α > 0.

A1. The definition of the local measure of scale economies µ(x) is that µ(x) is the sum of the

elasticities

µi(x) ≡ ∂f

∂xi

xi
f(x)

of output with respect to input i.

Here

µ1(x) = αxα−1
1 xα2

x3
1 + x3

x1
f(x)

= α (1− 1)

µ2(x) = αxα1x
α−1
2

x3
1 + x3

x2
f(x)

= α (1− 2)

µ3(x) = [x1x2]α(1 + x3)−2 x3
f(x)

=
1

1 + x3
(1− 3)

So that

µ(x) = 2α+
1

1 + x3
(1− 4)

If α ≥ 0.5, then the function exhibits increasing returns to scale everywhere.

If α < 0.5, then the function exhibits increasing returns whenever

2α+
1

1 + x3
> 1 (1− 5)

which is equivalent to

x3 <
2α

1− 2α
(1− 6)

If α < 0.5, and if x3 >
2α

1−2α , then the function exhibits decreasing returns to scale.

Q2. Derive the cost function for the production function

f(x1, x2) = log (x1 + 1) + log (x2 + 1)− log (x1 + x2 + 2) + log 2

A2. This cost function is pretty similar to the utility function from question #5 in assignment

1 from F2011. The one difference is that x1 and x2 have been replaced by x1 + 1 and x2 + 1 (and

a constant has been added) to ensure that f(0, 0) = 0.



So the conditional input demand functions in this question are going to be the Hicksian demand

functions from that other question, minus 1.

Formally, minimization of w1x1 + w2x2 subject to the constraint that f(x1, x2) ≥ y yields

first–order conditions
1

x1 + 1
− 1

x1 + x2 + 2
= µw1 (2− 1)

1

x2 + 1
− 1

x1 + x2 + 2
= µw2 (2− 2)

which can be written
1

X1
− 1

X1 +X2
= µw1 (2− 3)

1

X2
− 1

X1 +X2
= µw2 (2− 4)

if we let Xi ≡ xi + 1. These two equations can be written

X2

X1(X1 +X2)
= µw1 (2− 5)

X1

X2(X1 +X2)
= µw2 (2− 6)

so that

[
X2

X1
]2 =

w1

w2
(2− 7)

or

X2 =

√
w1

w2
X1 (2− 8)

The constraint that f(x1, x2) = y is

logX1 + logX2 − log (X1 +X2) = y − log 2 (2− 9)

so that substitution of (2− 8) into (2− 9) yields

logX1 + log
√
w1 − log

√
w2 + logX1 − log (

√
w1 +

√
w2)− logX1 + log

√
w2 = y − log 2 (2− 10)

or

X1 = e(y−log 2)

√
w1 +

√
w2√

w1
(2− 11)

or

x1(w1, w2, y) =
1

2
ey
√
w1 +

√
w1√

w1
− 1 (2− 12)

which is the conditional input demand function for input 1. From (2− 8), then

x2(w1, w2, y) =
1

2
ey
√
w1 +

√
w2√

w2
− 1 (2− 13)



The cost function is w1x1(w1, w2, y) + w2x2(w1, w2, y), or (from equations (2− 12) and (2− 13))

C(w1, w2, y) =
1

2
ey[
√
w1 +

√
w2]2 − w1 − w2 (2− 14)

[If one input is much cheaper than the other, then there may be a corner solution, if the output

level y is small.

Expressions (2−12) and (2−13) imply that both x1 and x2 must be non–negative, no matter

what the input prices w1 and w2, if ey ≥ 2.

But if y < log 2, then expression (2− 12) will be negative if (and only if)√
w2

w1
< 2e−y − 1 (2− 15)

If inequality (2− 15) holds, then we have a corner solution, in which x1 = 0. The value of x2 then,

is the solution to f(0, x2) = y, or

x2(w1, w2, y) = 2
ey − 1

2− ey
(2− 16)

so that

C(w1, w2, y) = 2w2
ey − 1

2− ey
(2− 17)

Conversely, if
√

w1

w2
< 2e−y − 1, then x2 = 0, and

C(w1, w2, y) = 2w1
ey − 1

2− ey
(2− 18) ]

Q3. What are total industry profits (as a function of the price p in long–run equilibrium in

the following perfectly competitive industry?

A type–t firm has a total cost function, as a function of the firm’s output q of

Ci(q) =
1

2
q2 +At

where A is a positive constant.

There is a continuum of firms. Firms differ in their type t : this type is distributed uniformly

over [0, 1]. The total “number” of firms (that is the measure of all firms of all types) is some finite

M .

[So half the firms have a value of t between 0 and 0.5, a quarter of the firms have a value of t

between 0 and 0.25, etc.]

A3. For each firm, whatever its type,

MC(q) = q (3− 1)



so that each firm’s marginal cost curve slopes up. For any firm of type t, then, if it chooses to enter

the industry, it will choose a quantity of output q(t) such that MC(q(t)) = p, or (from equation

(3− 1))

q(t) = p (3− 2)

The firm’s total profit, if it chooses to enter, is

π(p, t) = pq(t)− 1

2
(q(t))2 −At (3− 3)

or (from equation (3− 2))

π(p, t) =
p2

2
−At (3− 4)

Equation (3−4) confirms that a firm’s profit decreases with its type t, since high–t firms have

higher fixed costs.

So the highest type T of firm is the type T (p) for which π(p, t) = 0, or

T (p) =
p2

2A
(3− 5)

which is a non–decreasing function of the price p.

The number of firms of type between 0 and t is Mt, because of the assumption that firms’

types are distributed uniformly over [0, 1].

If T (p) < 1, then total industry profit is

Π(p) = M [

∫ T (p)

0

π(p, t)dt] = M [

∫ T (p)

0

[
p2

2
−At]dt] (3− 6)

or (from the definition (3− 5) of T (p))

Π(p) =
Mp4

8A
(3− 7)

Equation (3− 7) holds only if T (p) ≤ 1. If T (p) > 1, then there is no entry or exit at the margin.

From equation (3− 5), T (p) = 1 when

p =
√

2A (3− 8)

When p >
√
A there is no further entry of new firms, so that

Π(p) = M [

∫ 1

0

[
p2

2
−At]dt] (3− 9)

or

Π(p) =
M(p2 −A)

2
(3− 10)

Q4. What is the equilibrium when two firms choose quantities simultaneously (that is, in a

Cournot duopoly) if the market demand function for the firms’ identical products was

p = A−Q



where Q ≡ q1 + q2 is the combined output of the two firms, when firm 1’s total cost function is

TC1(q1) = q1

and firm 2’s total cost function is

TC2(q2) = q2 + 4 if q2 > 0 ; TC2(0) = 0

where A is some positive constant? [So firm 2 has a fixed cost of 4, which it can avoid only by

producing nothing.]

A4. Each firm has a constant marginal cost of 1. So, if each firm chooses to produce a positive

quantity of output, it has a reaction function

qi =
A− 1

2
− qj

2
(4− 1)

where j is the other firm’s output.

So the only possible equilibrium output levels (q1, q2) for which both q1 and q2 are positive is

qeq1 = qeq2 =
A− 1

3
(4− 2)

If (4− 2) holds for both firms, then total industry output is

Q ≡ q1 + q2 =
2(A− 1)

3
(4− 3)

so that

p =
A+ 2

3
(4− 4)

meaning that firm 1 earns profits of

π1 = (p− 1)q1 =
(A− 1)2

9
(4− 5)

and firm 2 earns profits of

π2 = (p− 1)q2 − 4 =
(A− 1)2

9
− 4 (4− 6)

Note that expression (4−5) is always positive, no matter what the value of A. But expression

4− 6) is only positive if A > 7.

So if A > 7, there is a “standard” Cournot equilibrium, in which both firms produce the

same positive level of output q1 = q2 = (A−1)
3 . But if A < 7, then firm 2 cannot make a positive

profit. Hence, if A < 7, firm 2 chooses to produce no output at all, and firm 1 reacts to q2 = 0 by

producing its best reaction (from equation (4− 1)),

qmono1 =
A− 1

2
(4− 7)



But even if A is (a little) above 7, there may be an equilibrium in which firm 2 produces

nothing.

Suppose that firm 1 produces the monopoly output. From equation (4 − 1), firm 2’s best

reaction to q1 = A−1
2 — if it were to produce a positive level of output — is

qr2 =
A− 1

4
(4− 8)

If firm 1 produces qmono1 and firm 2 produces qr2, then

p =
A+ 3

4
(4− 9)

so that firm 2’s profit would be

πr2 =
(A− 1)2

16
− 4 (4− 10)

which is positive only if A > 9.

So the best reaction by firm 2 to q1 = qmono1 = A−1
2 is to produce nothing at all, if A < 9.

That means that q1 = A−1
2 , q2 = 0 is an equilibrium in the Cournot duopoly, if A ≤ 9. Firm

2 responds to the monopoly output (of firm 1) by shutting down, and firm 1 responds to firm 2

shutting down by producing the monopoly output.

So when 7 ≤ A ≤ 9 there are actually 2 different equilibria in this Cournot duopoly. One has

both firm’s producing the “standard” Cournot outputs q1 = q2 = A−1
3 , and the other has q1 = A−1

2

and q2 = 0. When A > 9, only the first pair of outputs is an equilibrium, and when A < 7 only

the second pair is an equilibrium.

Q5. Find a symmetric Bertrand equilibrium, when two firms produce goods which are close

(but imperfect) substitutes, with each firm i facing a demand curve

qi =
p−α−1
i

p−αi + p−αj

where pj is the other firm’s price, when each firm has a constant marginal cost c.

The parameter α is positive (and equals σ − 1, where σ is buyers’ elasticity of substitution

between the 2 goods).

A5. Given the demand function, firm #1’s profit, p1q1 − cq1, equals

π1 =
p−α1

p−α1 + p−α2

− cp−α−1
1

p−α1 + p−α2

(5− 1)

As a Bertrand competitor, firm #1 chooses p1 so as to maximize expression (5−1), taking as given

the other firm’s price p2. The first–order condition for this maximization is

∂π1
∂p1

=
p−α−2
1

[p−α1 + p−α2 ]2
[−αp1p−α2 + cp−α1 + (α+ 1)cp−α2 ] = 0 (5− 2)



So firm #1’s reaction to firm #2’s price p2 can be written as

−αp1p−α2 + cp−α1 + (α+ 1)cp−α2 = 0 (5− 3)

(Differentiating equation (5−3) with respect to p1 and p2 would give the slope of firm #1’s reaction

function in p2–p1 space.)

Firm #2 has an analogous problem, and a reaction function

−αp2p−α1 + cp−α2 + (α+ 1)cp−α1 = 0 (5− 4)

If there is a symmetric equilibrium, the common price p chosen by the two firms will be the

solution to (5− 3) (or (5− 4)) with p1 = p2 = p, or

−αp1−α + cp−α1 + (α+ 1)cp−α = 0 (5− 5)

meaning that the common price p is

p =
α+ 2

α
c (5− 6)

So the equilibrium price p exceeds the firms’ common marginal cost. As long as the two firms’

products are less–than–perfect substitutes, Bertrand competition does not drive their profits down

to zero. Notice that the higher the elasticity of substitution α + 1, the lower is the price. As

α → ∞, then p → c, so that the “standard” Bertrand result, of undercutting driving the price

down to marginal cost, is a special case here, as the two firms’ products approach being perfect

substitutes for each other.


