$Q 1$. For what input levels $\left(x_{1}, x_{2}, x_{3}\right)$ does the following production function exhibit increasing returns to scale (using the "local" measure $\mu(\mathbf{x})$ of scale economies)?

$$
f(\mathbf{x}) \equiv\left[x_{1} x_{2}\right]^{\alpha} \frac{x_{3}}{1+x_{3}}
$$

where $\alpha>0$.
$A 1$. The definition of the local measure of scale economies $\mu(x)$ is that $\mu(\mathbf{x})$ is the sum of the elasticities

$$
\mu_{i}(\mathbf{x}) \equiv \frac{\partial f}{\partial x_{i}} \frac{x_{i}}{f(\mathbf{x})}
$$

of output with respect to input i.
Here

$$
\begin{gather*}
\mu_{1}(\mathbf{x})=\alpha x_{1}^{\alpha-1} x_{2}^{\alpha} \frac{x_{3}}{1+x_{3}} \frac{x_{1}}{f(\mathbf{x})}=\alpha \tag{1-1}\\
\mu_{2}(\mathbf{x})=\alpha x_{1}^{\alpha} x_{2}^{\alpha-1} \frac{x_{3}}{1+x_{3}} \frac{x_{2}}{f(\mathbf{x})}=\alpha \tag{1-2}\\
\mu_{3}(\mathbf{x})=\left[x_{1} x_{2}\right]^{\alpha}\left(1+x_{3}\right)^{-2} \frac{x_{3}}{f(\mathbf{x})}=\frac{1}{1+x_{3}} \tag{1-3}
\end{gather*}
$$

So that

$$
\begin{equation*}
\mu(\mathbf{x})=2 \alpha+\frac{1}{1+x_{3}} \tag{1-4}
\end{equation*}
$$

If $\alpha \geq 0.5$, then the function exhibits increasing returns to scale everywhere.
If $\alpha<0.5$, then the function exhibits increasing returns whenever

$$
\begin{equation*}
2 \alpha+\frac{1}{1+x_{3}}>1 \tag{1-5}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
x_{3}<\frac{2 \alpha}{1-2 \alpha} \tag{1-6}
\end{equation*}
$$

If $\alpha<0.5$, and if $x_{3}>\frac{2 \alpha}{1-2 \alpha}$, then the function exhibits decreasing returns to scale.
$Q 2$. Derive the cost function for the production function

$$
f\left(x_{1}, x_{2}\right)=\log \left(x_{1}+1\right)+\log \left(x_{2}+1\right)-\log \left(x_{1}+x_{2}+2\right)+\log 2
$$

$A 2$. This cost function is pretty similar to the utility function from question $\# 5$ in assignment 1 from F2011. The one difference is that x_{1} and x_{2} have been replaced by $x_{1}+1$ and $x_{2}+1$ (and a constant has been added) to ensure that $f(0,0)=0$.

So the conditional input demand functions in this question are going to be the Hicksian demand functions from that other question, minus 1.

Formally, minimization of $w_{1} x_{1}+w_{2} x_{2}$ subject to the constraint that $f\left(x_{1}, x_{2}\right) \geq y$ yields first-order conditions

$$
\begin{align*}
& \frac{1}{x_{1}+1}-\frac{1}{x_{1}+x_{2}+2}=\mu w_{1} \tag{2-1}\\
& \frac{1}{x_{2}+1}-\frac{1}{x_{1}+x_{2}+2}=\mu w_{2} \tag{2-2}
\end{align*}
$$

which can be written

$$
\begin{align*}
& \frac{1}{X_{1}}-\frac{1}{X_{1}+X_{2}}=\mu w_{1} \tag{2-3}\\
& \frac{1}{X_{2}}-\frac{1}{X_{1}+X_{2}}=\mu w_{2} \tag{2-4}
\end{align*}
$$

if we let $X_{i} \equiv x_{i}+1$. These two equations can be written

$$
\begin{align*}
& \frac{X_{2}}{X_{1}\left(X_{1}+X_{2}\right)}=\mu w_{1} \tag{2-5}\\
& \frac{X_{1}}{X_{2}\left(X_{1}+X_{2}\right)}=\mu w_{2} \tag{2-6}
\end{align*}
$$

so that

$$
\begin{equation*}
\left[\frac{X_{2}}{X_{1}}\right]^{2}=\frac{w_{1}}{w_{2}} \tag{2-7}
\end{equation*}
$$

or

$$
\begin{equation*}
X_{2}=\sqrt{\frac{w_{1}}{w_{2}}} X_{1} \tag{2-8}
\end{equation*}
$$

The constraint that $f\left(x_{1}, x_{2}\right)=y$ is

$$
\begin{equation*}
\log X_{1}+\log X_{2}-\log \left(X_{1}+X_{2}\right)=y-\log 2 \tag{2-9}
\end{equation*}
$$

so that substitution of $(2-8)$ into $(2-9)$ yields

$$
\log X_{1}+\log \sqrt{w_{1}}-\log \sqrt{w_{2}}+\log X_{1}-\log \left(\sqrt{w_{1}}+\sqrt{w_{2}}\right)-\log X_{1}+\log \sqrt{w_{2}}=y-\log 2(2-10)
$$

or

$$
\begin{equation*}
X_{1}=e^{(y-\log 2)} \frac{\sqrt{w_{1}}+\sqrt{w_{2}}}{\sqrt{w_{1}}} \tag{2-11}
\end{equation*}
$$

or

$$
\begin{equation*}
x_{1}\left(w_{1}, w_{2}, y\right)=\frac{1}{2} e^{y} \frac{\sqrt{w_{1}}+\sqrt{w_{1}}}{\sqrt{w_{1}}}-1 \tag{2-12}
\end{equation*}
$$

which is the conditional input demand function for input 1 . From $(2-8)$, then

$$
\begin{equation*}
x_{2}\left(w_{1}, w_{2}, y\right)=\frac{1}{2} e^{y} \frac{\sqrt{w_{1}}+\sqrt{w_{2}}}{\sqrt{w_{2}}}-1 \tag{2-13}
\end{equation*}
$$

The cost function is $w_{1} x_{1}\left(w_{1}, w_{2}, y\right)+w_{2} x_{2}\left(w_{1}, w_{2}, y\right)$, or (from equations $(2-12)$ and $\left.(2-13)\right)$

$$
\begin{equation*}
C\left(w_{1}, w_{2}, y\right)=\frac{1}{2} e^{y}\left[\sqrt{w_{1}}+\sqrt{w_{2}}\right]^{2}-w_{1}-w_{2} \tag{2-14}
\end{equation*}
$$

[If one input is much cheaper than the other, then there may be a corner solution, if the output level y is small.

Expressions $(2-12)$ and $(2-13)$ imply that both x_{1} and x_{2} must be non-negative, no matter what the input prices w_{1} and w_{2}, if $e^{y} \geq 2$.

But if $y<\log 2$, then expression ($2-12$) will be negative if (and only if)

$$
\begin{equation*}
\sqrt{\frac{w_{2}}{w_{1}}}<2 e^{-y}-1 \tag{2-15}
\end{equation*}
$$

If inequality $(2-15)$ holds, then we have a corner solution, in which $x_{1}=0$. The value of x_{2} then, is the solution to $f\left(0, x_{2}\right)=y$, or

$$
\begin{equation*}
x_{2}\left(w_{1}, w_{2}, y\right)=2 \frac{e^{y}-1}{2-e^{y}} \tag{2-16}
\end{equation*}
$$

so that

$$
\begin{equation*}
C\left(w_{1}, w_{2}, y\right)=2 w_{2} \frac{e^{y}-1}{2-e^{y}} \tag{2-17}
\end{equation*}
$$

Conversely, if $\sqrt{\frac{w_{1}}{w_{2}}}<2 e^{-y}-1$, then $x_{2}=0$, and

$$
\begin{equation*}
C\left(w_{1}, w_{2}, y\right)=2 w_{1} \frac{e^{y}-1}{2-e^{y}} \tag{2-18}
\end{equation*}
$$

Q3. What are total industry profits (as a function of the price p in long-run equilibrium in the following perfectly competitive industry?

A type- t firm has a total cost function, as a function of the firm's output q of

$$
C_{i}(q)=\frac{1}{2} q^{2}+A t
$$

where A is a positive constant.
There is a continuum of firms. Firms differ in their type t : this type is distributed uniformly over $[0,1]$. The total "number" of firms (that is the measure of all firms of all types) is some finite M.
[So half the firms have a value of t between 0 and 0.5 , a quarter of the firms have a value of t between 0 and 0.25 , etc.]
$A 3$. For each firm, whatever its type,

$$
\begin{equation*}
M C(q)=q \tag{3-1}
\end{equation*}
$$

so that each firm's marginal cost curve slopes up. For any firm of type t, then, if it chooses to enter the industry, it will choose a quantity of output $q(t)$ such that $M C(q(t))=p$, or (from equation $(3-1)$)

$$
\begin{equation*}
q(t)=p \tag{3-2}
\end{equation*}
$$

The firm's total profit, if it chooses to enter, is

$$
\begin{equation*}
\pi(p, t)=p q(t)-\frac{1}{2}(q(t))^{2}-A t \tag{3-3}
\end{equation*}
$$

or (from equation $(3-2)$)

$$
\begin{equation*}
\pi(p, t)=\frac{p^{2}}{2}-A t \tag{3-4}
\end{equation*}
$$

Equation (3-4) confirms that a firm's profit decreases with its type t, since high- t firms have higher fixed costs.

So the highest type T of firm is the type $T(p)$ for which $\pi(p, t)=0$, or

$$
\begin{equation*}
T(p)=\frac{p^{2}}{2 A} \tag{3-5}
\end{equation*}
$$

which is a non-decreasing function of the price p.
The number of firms of type between 0 and t is $M t$, because of the assumption that firms' types are distributed uniformly over $[0,1]$.

If $T(p)<1$, then total industry profit is

$$
\begin{equation*}
\Pi(p)=M\left[\int_{0}^{T(p)} \pi(p, t) d t\right]=M\left[\int_{0}^{T(p)}\left[\frac{p^{2}}{2}-A t\right] d t\right] \tag{3-6}
\end{equation*}
$$

or (from the definition $(3-5)$ of $T(p)$)

$$
\begin{equation*}
\Pi(p)=\frac{M p^{4}}{8 A} \tag{3-7}
\end{equation*}
$$

Equation ($3-7$) holds only if $T(p) \leq 1$. If $T(p)>1$, then there is no entry or exit at the margin. From equation $(3-5), T(p)=1$ when

$$
\begin{equation*}
p=\sqrt{2 A} \tag{3-8}
\end{equation*}
$$

When $p>\sqrt{A}$ there is no further entry of new firms, so that

$$
\begin{equation*}
\Pi(p)=M\left[\int_{0}^{1}\left[\frac{p^{2}}{2}-A t\right] d t\right] \tag{3-9}
\end{equation*}
$$

or

$$
\begin{equation*}
\Pi(p)=\frac{M\left(p^{2}-A\right)}{2} \tag{3-10}
\end{equation*}
$$

$Q 4$. What is the equilibrium when two firms choose quantities simultaneously (that is, in a Cournot duopoly) if the market demand function for the firms' identical products was

$$
p=A-Q
$$

where $Q \equiv q_{1}+q_{2}$ is the combined output of the two firms, when firm 1's total cost function is

$$
T C_{1}\left(q_{1}\right)=q_{1}
$$

and firm 2's total cost function is

$$
T C_{2}\left(q_{2}\right)=q_{2}+4 \quad \text { if } \quad q_{2}>0 \quad ; \quad T C_{2}(0)=0
$$

where A is some positive constant? [So firm 2 has a fixed cost of 4 , which it can avoid only by producing nothing.]

A4. Each firm has a constant marginal cost of 1 . So, if each firm chooses to produce a positive quantity of output, it has a reaction function

$$
\begin{equation*}
q_{i}=\frac{A-1}{2}-\frac{q_{j}}{2} \tag{4-1}
\end{equation*}
$$

where j is the other firm's output.
So the only possible equilibrium output levels $\left(q_{1}, q_{2}\right)$ for which both q_{1} and q_{2} are positive is

$$
\begin{equation*}
q_{1}^{e q}=q_{2}^{e q}=\frac{A-1}{3} \tag{4-2}
\end{equation*}
$$

If $(4-2)$ holds for both firms, then total industry output is

$$
\begin{equation*}
Q \equiv q_{1}+q_{2}=\frac{2(A-1)}{3} \tag{4-3}
\end{equation*}
$$

so that

$$
\begin{equation*}
p=\frac{A+2}{3} \tag{4-4}
\end{equation*}
$$

meaning that firm 1 earns profits of

$$
\begin{equation*}
\pi_{1}=(p-1) q_{1}=\frac{(A-1)^{2}}{9} \tag{4-5}
\end{equation*}
$$

and firm 2 earns profits of

$$
\begin{equation*}
\pi_{2}=(p-1) q_{2}-4=\frac{(A-1)^{2}}{9}-4 \tag{4-6}
\end{equation*}
$$

Note that expression $(4-5)$ is always positive, no matter what the value of A. But expression $4-6$) is only positive if $A>7$.

So if $A>7$, there is a "standard" Cournot equilibrium, in which both firms produce the same positive level of output $q_{1}=q_{2}=\frac{(A-1)}{3}$. But if $A<7$, then firm 2 cannot make a positive profit. Hence, if $A<7$, firm 2 chooses to produce no output at all, and firm 1 reacts to $q_{2}=0$ by producing its best reaction (from equation ($4-1$)),

$$
\begin{equation*}
q_{1}^{\text {mono }}=\frac{A-1}{2} \tag{4-7}
\end{equation*}
$$

But even if A is (a little) above 7, there may be an equilibrium in which firm 2 produces nothing.

Suppose that firm 1 produces the monopoly output. From equation ($4-1$), firm 2 's best reaction to $q_{1}=\frac{A-1}{2}$ - if it were to produce a positive level of output - is

$$
\begin{equation*}
q_{2}^{r}=\frac{A-1}{4} \tag{4-8}
\end{equation*}
$$

If firm 1 produces $q_{1}^{\text {mono }}$ and firm 2 produces q_{2}^{r}, then

$$
\begin{equation*}
p=\frac{A+3}{4} \tag{4-9}
\end{equation*}
$$

so that firm 2's profit would be

$$
\begin{equation*}
\pi_{2}^{r}=\frac{(A-1)^{2}}{16}-4 \tag{4-10}
\end{equation*}
$$

which is positive only if $A>9$.
So the best reaction by firm 2 to $q_{1}=q_{1}^{\text {mono }}=\frac{A-1}{2}$ is to produce nothing at all, if $A<9$.
That means that $q_{1}=\frac{A-1}{2}, q_{2}=0$ is an equilibrium in the Cournot duopoly, if $A \leq 9$. Firm 2 responds to the monopoly output (of firm 1) by shutting down, and firm 1 responds to firm 2 shutting down by producing the monopoly output.

So when $7 \leq A \leq 9$ there are actually 2 different equilibria in this Cournot duopoly. One has both firm's producing the "standard" Cournot outputs $q_{1}=q_{2}=\frac{A-1}{3}$, and the other has $q_{1}=\frac{A-1}{2}$ and $q_{2}=0$. When $A>9$, only the first pair of outputs is an equilibrium, and when $A<7$ only the second pair is an equilibrium.

Q5. Find a symmetric Bertrand equilibrium, when two firms produce goods which are close (but imperfect) substitutes, with each firm i facing a demand curve

$$
q_{i}=\frac{p_{i}^{-\alpha-1}}{p_{i}^{-\alpha}+p_{j}^{-\alpha}}
$$

where p_{j} is the other firm's price, when each firm has a constant marginal cost c.
The parameter α is positive (and equals $\sigma-1$, where σ is buyers' elasticity of substitution between the 2 goods).
$A 5$. Given the demand function, firm $\# 1$'s profit, $p_{1} q_{1}-c q_{1}$, equals

$$
\begin{equation*}
\pi_{1}=\frac{p_{1}^{-\alpha}}{p_{1}^{-\alpha}+p_{2}^{-\alpha}}-\frac{c p_{1}^{-\alpha-1}}{p_{1}^{-\alpha}+p_{2}^{-\alpha}} \tag{5-1}
\end{equation*}
$$

As a Bertrand competitor, firm \#1 chooses p_{1} so as to maximize expression (5-1), taking as given the other firm's price p_{2}. The first-order condition for this maximization is

$$
\begin{equation*}
\frac{\partial \pi_{1}}{\partial p_{1}}=\frac{p_{1}^{-\alpha-2}}{\left[p_{1}^{-\alpha}+p_{2}^{-\alpha}\right]^{2}}\left[-\alpha p_{1} p_{2}^{-\alpha}+c p_{1}^{-\alpha}+(\alpha+1) c p_{2}^{-\alpha}\right]=0 \tag{5-2}
\end{equation*}
$$

So firm \#1's reaction to firm \#2's price p_{2} can be written as

$$
\begin{equation*}
-\alpha p_{1} p_{2}^{-\alpha}+c p_{1}^{-\alpha}+(\alpha+1) c p_{2}^{-\alpha}=0 \tag{5-3}
\end{equation*}
$$

(Differentiating equation (5-3) with respect to p_{1} and p_{2} would give the slope of firm \#1's reaction function in $p_{2}-p_{1}$ space.)

Firm \#2 has an analogous problem, and a reaction function

$$
\begin{equation*}
-\alpha p_{2} p_{1}^{-\alpha}+c p_{2}^{-\alpha}+(\alpha+1) c p_{1}^{-\alpha}=0 \tag{5-4}
\end{equation*}
$$

If there is a symmetric equilibrium, the common price p chosen by the two firms will be the solution to $(5-3)$ (or $(5-4))$ with $p_{1}=p_{2}=p$, or

$$
\begin{equation*}
-\alpha p^{1-\alpha}+c p_{1}^{-\alpha}+(\alpha+1) c p^{-\alpha}=0 \tag{5-5}
\end{equation*}
$$

meaning that the common price p is

$$
\begin{equation*}
p=\frac{\alpha+2}{\alpha} c \tag{5-6}
\end{equation*}
$$

So the equilibrium price p exceeds the firms' common marginal cost. As long as the two firms' products are less-than-perfect substitutes, Bertrand competition does not drive their profits down to zero. Notice that the higher the elasticity of substitution $\alpha+1$, the lower is the price. As $\alpha \rightarrow \infty$, then $p \rightarrow c$, so that the "standard" Bertrand result, of undercutting driving the price down to marginal cost, is a special case here, as the two firms' products approach being perfect substitutes for each other.

