due : Monday November 27 before class
Do all 5 questions. Each counts 20%.

1. What does the contract curve look like for a 2 -person exchange economy, in which the preferences of the two people can be represented by the utility functions

$$
\begin{array}{r}
U^{1}\left(x_{1}^{1}, x_{2}^{1}\right)=\log \left(x_{1}^{1}\right)+x_{2}^{1} \\
U^{2}\left(x_{1}^{2}, x_{2}^{2}\right)=\log \left(x_{1}^{2}\right)+\log \left(x_{2}^{2}\right) \quad ?
\end{array}
$$

2. Show that the following allocation is not in the core of the 20 -person exchange economy described below. (That is, find a coalition which blocks the allocation.)

The allocation is

$$
\begin{gathered}
\mathbf{x}^{i}=(76,76) \quad \text { for } \quad i=1,2,3, \cdots, 9 \\
\mathbf{x}^{10}=(66,66) \\
\mathbf{x}^{i}=(125,125) \text { for } i=11,12, \cdots, 20
\end{gathered}
$$

In this economy, the preferences of each of the 20 people can be represented by the utility function

$$
u^{i}\left(x_{1}^{i}, x_{2}^{i}\right)=\log \left(x_{1}^{i}\right)+\log \left(x_{2}^{i}\right)
$$

and the endowments are

$$
\begin{gathered}
\mathbf{e}^{i}=(150,0) \quad \text { for } \quad i=1,2, \cdots, 10 \\
\mathbf{e}^{i}=(50,200) \quad \text { for } \quad i=11,12, \cdots, 20
\end{gathered}
$$

3. Find all the allocations in the core of the following 3-person economy.

Each person has the same preferences : person i 's preferences can be represented by the utility function

$$
u^{i}\left(x_{1}^{i}, x_{2}^{i}\right)=x_{1}^{i} x_{2}^{i} \quad i=1,2,3
$$

The endowment vectors \mathbf{e}^{i} of the three people are

$$
\begin{aligned}
& \mathbf{e}^{1}=(3,0) \\
& \mathbf{e}^{2}=(0,3) \\
& \mathbf{e}^{3}=(1,1)
\end{aligned}
$$

4. Find a competitive equilibrium price vector for the following exchange economy.

There are 3 million people in the economy.
Each of the three million people has the same endowment vector,

$$
\mathbf{e}^{i}=\left(e_{1}, e_{2}, e_{3}\right)
$$

One million people are "type 1" people, and have preferences represented by the utility function

$$
u^{i}\left(\mathbf{x}^{i}\right)=x_{1}^{i} x_{2}^{i} x_{3}^{i}
$$

One million people are "type 2 " people, and have preferences represented by the utility function

$$
u^{i}\left(\mathbf{x}^{i}\right)=x_{2}^{i}
$$

One million people are "type 3 " people, and have preferences represented by the utility function

$$
u^{i}(\mathbf{x})^{i}=\left(x_{1}^{i}\right)\left[\left(x_{3}^{i}\right)^{2}\right]
$$

5. Find all the Nash equilibria (in pure and mixed strategies) to the following two-person game in strategic form.

	L	M	R
a	$(2,2)$	$(10,1)$	$(2,6)$
b	$(6,4)$	$(12,3)$	$(2,12)$
c	$(0,12)$	$(10,10)$	$(1,10)$
d	$(12,2)$	$(6,0)$	$(0,0)$

