$Q 1$. What does the contract curve look like for a 2 -person exchange economy, in which the preferences of the two people can be represented by the utility functions

$$
\begin{array}{r}
U^{1}\left(x_{1}^{1}, x_{2}^{1}\right)=\log \left(x_{1}^{1}\right)+x_{2}^{1} \\
U^{2}\left(x_{1}^{2}, x_{2}^{2}\right)=\log \left(x_{1}^{2}\right)+\log \left(x_{2}^{2}\right) \quad ?
\end{array}
$$

A1. If an allocation $\mathbf{x}^{1}, \mathbf{x}^{2}$, with $\mathbf{x}^{1} \gg 0$ and $\mathbf{x}^{2} \gg 0$, is Pareto efficient, then it must be true that the two people's $M R S$'s are the same.

With the preferences in the question, $M R S^{1}=M R S^{2}$ if and only if

$$
\begin{equation*}
\frac{1}{x_{1}^{1}}=\frac{x_{2}^{2}}{x_{1}^{2}} \tag{1-1}
\end{equation*}
$$

Since $x_{i}^{1}+x_{i}^{2}=E_{i}$ for good i, where E_{i} is the total endowment of good i, then equation $(1-1)$ can be written

$$
\begin{equation*}
\frac{1}{x_{1}^{1}}=\frac{E_{2}-x_{2}^{1}}{E_{1}-x_{1}^{1}} \tag{1-2}
\end{equation*}
$$

or

$$
\begin{equation*}
x_{2}^{1}=E_{2}+1-\frac{E_{1}}{x_{1}^{1}} \tag{1-3}
\end{equation*}
$$

Equation $(1-3)$ is the equation of the contract curve, since it expresses person 1's consumption of good 2 as a function of her consumption of good 1 . Since $(1-3)$ implies that

$$
\begin{equation*}
\frac{d x_{1}^{2}}{d x_{1}^{1}}=\frac{E_{1}}{\left(X_{1}^{1}\right)^{2}} \tag{1-4}
\end{equation*}
$$

the curve is upward-sloping, and concave.
When person $\# 1$ has all of good $1-x_{1}^{1}=E_{1}-$ then equation $(1-3)$ implies that $x_{2}^{1}=E_{2}$. So the contract curve goes through the top right corner of the Edgeworth box.

But the curve does not go through the bottom-left corner of the Edgeworth box. If person $\# 2$ were to get all of the total endowment of good $\# 1$, so that $x_{1}^{1}=0$, then equation ($1-3$) implies $x_{2}^{1} \rightarrow-\infty$, an impossibility.

Due to person 1's quasi-linear preferences, the contract curve hits the bottom of the Edgeworth box to the right of the origin. Equation $(1-3)$ says that $x_{2}^{1}=0$ when

$$
\begin{equation*}
x_{1}^{1}=\frac{E_{1}}{E_{2}+1} \tag{1-5}
\end{equation*}
$$

So the point

$$
\left(x_{1}^{1}, x_{2}^{1}\right)=\left(\frac{E_{1}}{E_{2}+1}, 0\right)
$$

is on the contract curve.
That means that, for these preferences, the contract curve has two pieces : it is the bottom of the Edgeworth box, from the point $(0,0)$ to the point $\left(\frac{E_{1}}{E_{2}+1}, 0\right)$, and then it is the upward-sloping curve defined by equation $(1-3)$.

$Q 2$. Show that the following allocation is not in the core of the 20 -person exchange economy described below. (That is, find a coalition which blocks the allocation.)

The allocation is

$$
\begin{gathered}
\mathbf{x}^{i}=(76,76) \quad \text { for } \quad i=1,2,3, \cdots, 9 \\
\mathbf{x}^{10}=(66,66) \\
\mathbf{x}^{i}=(125,125) \quad \text { for } \quad i=11,12, \cdots, 20
\end{gathered}
$$

In this economy, the preferences of each of the 20 people can be represented by the utility function

$$
u^{i}\left(x_{1}^{i}, x_{2}^{i}\right)=\log \left(x_{1}^{i}\right)+\log \left(x_{2}^{i}\right)
$$

and the endowments are

$$
\begin{gathered}
\mathbf{e}^{i}=(150,0) \quad \text { for } \quad i=1,2, \cdots, 10 \\
\mathbf{e}^{i}=(50,200) \quad \text { for } \quad i=11,12, \cdots, 20
\end{gathered}
$$

A2. Since all people have identical, homothetic preferences, an allocation is Pareto efficient only if x_{1}^{i} / x_{2}^{i} is equal across all people i. In the allocation $\mathbf{x}, x_{1}^{i}=x_{2}^{i}$ for each person, so that the allocation is Pareto optimal, and cannot be blocked by a "coalition of everybody".

Each allocation in the core must give each person higher utility than her endowment : otherwise it could be blocked by a coalition consisting of one person. Here the first 10 people get utility of 0 from consuming their own endowment, and positive utility from the allocation \mathbf{x}. The last 10 people get utility of $(125)(125)=15625>(50)(200)=10000$, so that everyone prefers \mathbf{x} to her or his own endowment : the allocation cannot be blocked by a coalition of 1 person.

But it can be blocked by a coalition of 2 people. Person 10 is an obvious candidate for someone to join a blocking coalition. If she forms a coalition with any one person j, with $j>10$, this $2-$ person coalition has a total endowment of $(200,200)$. So, for example, person 10 and person 11 could form a 2 -person coalition and provide the consumption bundles $\mathbf{y}^{11}=(70,70), \mathbf{y}^{11}=(130,130)$ to its 2 members. Since $\mathbf{y}^{10} \gg \mathbf{x}^{10}$ and $\mathbf{y}^{11} \gg \mathbf{x}^{11}$, both person 10 and person 11 would prefer to form this coalition, over accepting the allocation \mathbf{x}. Therefore, the coalition $S=\{10,11\}$ blocks the allocation \mathbf{x} with the allocation $\mathbf{y}^{10}=(70,70), \mathbf{y}^{11}=(130,130)$.
(This is certainly not the only coalition which can block \mathbf{x}.)

Q3. Find all the allocations in the core of the following 3-person economy.
Each person has the same preferences : person i 's preferences can be represented by the utility function

$$
u^{i}\left(x_{1}^{i}, x_{2}^{i}\right)=x_{1}^{i} x_{2}^{i} \quad i=1,2,3
$$

The endowment vectors \mathbf{e}^{i} of the three people are

$$
\begin{aligned}
& \mathbf{e}^{1}=(3,0) \\
& \mathbf{e}^{2}=(0,3) \\
& \mathbf{e}^{3}=(1,1)
\end{aligned}
$$

A3. Every allocation in the core must be Pareto optimal (but not vice versa) : if an allocation were not Pareto optimal, then it could be blocked by the coalition of everybody, by finding an allocation which is Pareto-preferred too it.

Here each person's marginal rate of substitution is

$$
\begin{equation*}
M R S^{i} \equiv \frac{U_{1}^{i}}{U_{2}^{i}}=\frac{x_{2}^{i}}{x_{1}^{i}} \tag{3-1}
\end{equation*}
$$

so that the Pareto optimality condiiton $M R S^{1}=M R S^{2}=M R S^{3}$ requires

$$
\begin{equation*}
x_{2}^{1} / x_{1}^{1}=x_{2}^{2} / x_{1}^{2}=x_{2}^{3} / x_{1}^{3} \tag{3-2}
\end{equation*}
$$

Since the total endowments of each good are equal, condition $(3-2)$ requires that $x_{1}^{i}=x_{2}^{i}$ for each person i.

That means that an allocation in the core must be of the form

$$
\begin{aligned}
\mathbf{x}^{1} & =(a, a) \\
\mathbf{x}^{2} & =(b, b) \\
\mathbf{x}^{3} & =(c, c)
\end{aligned}
$$

for some positive $a b$ and c, with $a+b+c=4$.
Person \#3 gets utility 1 from consuming her own endowment. Therefore it must be true that $c \geq 1$ for any allocation in the core : if $c<1$ a coalition-of-one, of person $\# 3$ would block the allocation by consuming her own endowment $(1,1)$.

A coalition of person 1 and 2 has a total endowment of $(3,3)$. So that coalition can guarantee its two members consumption bundles $\mathbf{x}^{1}=(a, a)$ and $\mathbf{x}^{2}=(3-a, 3-a)$, for any $0 \leq a \leq 3$. That means that any allocation in which $c>1$ can be blocked. If $c>1$, then $b=4-a-c<3-a$, so that the coalition of $\{1,2\}$ can give person \#1 (a, a) and person $\# 2(3-a, 3-a) \gg(b, b)$, and block the allocation.

So an allocation in the core must therefore be of the form

$$
\begin{gathered}
\mathbf{x}^{1}=(a, a) \\
\mathbf{x}^{2}=(3-a, 3-a) \\
\mathbf{x}^{3}=(1,1)
\end{gathered}
$$

if it is in the core.
The remaining chore is to check what values of a cannot be blocked.
So suppose that a is small. Person $\# 1$ would like to block this allocation by forming a coalition with person \#3 : note than she cannot block the allocation by forming a coalition with person \#2 (since that
coalition cannot do better than $\mathbf{x}^{1}=(a, a)$ and $\left.\mathbf{x}^{2}=(3-a, 3-a)\right)$. To get person $\# 3$ to join the coalition, person \#1 must offer her a utility at least as high as she gets under the proposed allocation : 1.

The coalition of $\# 1$ and $\# 3$ has a total endowment of $(4,1)$. So to get person $\# 3$ to join the coalition, and to block the original allocation, person $\# 1$ must solved the problem of finding \mathbf{y}^{1} and \mathbf{y}^{3} for people \#1 and $\# 3$ so as to maximize her own ultility $\left(y_{1}^{1}\right)\left(y_{2}^{1}\right)$ subject to the constraints that $y_{1}^{1}+y_{1}^{3}=4, y_{2}^{1}+y_{2}^{3}=1$ and the constraint $\left(y_{1}^{3}\right)\left(y_{2}^{3}\right) \geq 1$ that is needed to get person $\# 3$ to join.

Substituting from the resource constraints $y_{1}^{1}=4-y_{1}^{3}$ and $y_{2}^{1}=1-y_{2}^{3}$, person $\# 1$ therefore picks y_{1}^{3} and y_{2}^{3} to maximize

$$
\left(4-y_{1}^{3}\right)\left(1-y_{2}^{3}\right)
$$

subject to the constraint that

$$
\left(y_{1}^{3}\right)\left(y_{2}^{3}\right)=1
$$

Solving this maximization (either setting up a Lagrangean, or substitution from the constraint into the maximand) implies that

$$
\begin{gather*}
y_{1}^{3}=2 \tag{3-3}\\
y_{2}^{3}=0.5 \tag{3-4}
\end{gather*}
$$

[Why does this make sense? if person \#1 and person \#3 form a blocking coalition, they should ensure that their coalition allocates its available resources $(4,1)$ efficiently. Efficiency here means ensuring that the available quantities of the two goods be divided so that $M R S_{1}=M R S_{3}$. With identical homothetic preferences, that means that we should have $y_{1}^{3}=4 y_{2}^{3}$ when the aggregate endowment of the coalition is $(4,1)$.]

So if person \#1 does not like her allocation (a, a), the only thing she can do to block it is to form a coalition with person $\# 3$, and give person $\# 3$ the allocation $(2,0.5)$, which leaves person $\# 1$ with the consumption bundle

$$
\mathbf{y}^{1}=(2,0.5)
$$

and a utility level of 1 .
That means an allocation in which $a<1$ can be blocked by the coalition of $\# 1$ and $\# 3$, with the allocation $\mathbf{y}^{1}=\mathbf{y}^{2}=(2,0.5)$. If $a>1$, then the allocation cannot be blocked.

Analogously, if $b<1$, the allocation can be blocked by a coalition of person $\# 2$ and person $\# 3$, but if $b>1$ it cannot be blocked by this coalition.

So the core of the economy is all allocations of the form

$$
\begin{gathered}
\mathbf{x}^{1}=(a, a) \\
\mathbf{x}^{2}=(3-a, 3-a) \\
\mathbf{x}^{3}=(1,1)
\end{gathered}
$$

provided that $1 \leq a \leq 2$.
[So the allocation $(1.2,1.2),(1.8,1.8),(1,1)$ is in the core, but the allocation $(0.8,0.8),(2.2,2.2),(1,1)$ is not.]

Q4. Find a competitive equilibrium price vector for the following exchange economy.
There are 3 million people in the economy.
Each of the three million people has the same endowment vector,

$$
\mathbf{e}^{i}=\left(e_{1}, e_{2}, e_{3}\right)
$$

One million people are "type 1 " people, and have preferences represented by the utility function

$$
u^{i}\left(\mathbf{x}^{i}\right)=x_{1}^{i} x_{2}^{i} x_{3}^{i}
$$

One million people are "type 2 " people, and have preferences represented by the utility function

$$
u^{i}\left(\mathbf{x}^{i}\right)=x_{2}^{i}
$$

One million people are "type 3 " people, and have preferences represented by the utility function

$$
u^{i}(\mathbf{x})^{i}=\left(x_{1}^{i}\right)\left(x_{3}^{i}\right)^{2}
$$

A4. Each person's endowment is worth

$$
\begin{equation*}
y=p_{1} e_{1}+p_{2} e_{2}+p_{3} e_{3} \tag{4-1}
\end{equation*}
$$

if the market price vector is $\mathbf{p} \equiv\left(p_{1}, p_{2}, p_{3}\right)$.
Given the Cobb-Douglas preferences for person $\# 1$ and person $\# 3$, and person $\# 2$'s preference for consuming only good $\# 2$, the Marshallian demand functions of the three people are

$$
\begin{align*}
& x_{1}^{1}(\mathbf{p}, y)=\frac{y}{3 p_{1}} \tag{4-2}\\
& x_{2}^{1}(\mathbf{p}, y)=\frac{y}{3 p_{2}} \tag{4-3}\\
& x_{3}^{1}(\mathbf{p}, y)=\frac{y}{3 p_{3}} \tag{4-4}\\
& x_{2}^{2}(\mathbf{p}, y)=\frac{y}{p_{2}} \tag{4-5}\\
& x_{3}^{1}(\mathbf{p}, y)=\frac{y}{3 p_{1}} \tag{4-6}\\
& x_{3}^{3}(\mathbf{p}, y)=\frac{2 y}{3 p_{3}} \tag{4-7}
\end{align*}
$$

(with the left-out demands all being 0). In equilibrium, total quantity demanded of each good must equal the total endowment, so that the market-clearing conditions for the three goods are

$$
\begin{gather*}
\frac{y}{3 p_{1}}+\frac{y}{3 p_{1}}=3 e_{1} \tag{4-8}\\
\frac{y}{3 p_{2}}+\frac{y}{p_{2}}=3 e_{2} \tag{4-9}\\
\frac{y}{3 p_{3}}+\frac{2 y}{3 p_{3}}=3 e_{3} \tag{4-10}
\end{gather*}
$$

These equations can be written

$$
\begin{align*}
& 2 y=9 e_{1} p_{1} \tag{4-11}\\
& 4 y=9 e_{2} p_{2} \tag{4-12}
\end{align*}
$$

$$
\begin{equation*}
5 y=9 e_{3} p_{3} \tag{4-13}
\end{equation*}
$$

so that

$$
\begin{align*}
& \frac{p_{2}}{p_{1}}=2 \frac{e_{1}}{e_{2}} \tag{4-14}\\
& \frac{p_{3}}{p_{1}}=\frac{3}{2} \frac{e_{1}}{e_{3}} \tag{4-15}
\end{align*}
$$

Equations $(4-14)$ and $(4-15)$ actually define the equilibrium prices, as functions of the relative endowments of the 3 goods. That is, an equilibrium price vector is any vector $\left(p_{1}, p_{2}, p_{3}\right)$, in which p_{1} can be any positive number, and the other two prices p_{2} and p_{3} are defined by equations $(4-14)$ and $(4-15)$.

For example

$$
\begin{equation*}
\mathbf{p}=\left(\frac{1}{e_{1}}, \frac{2}{e_{2}}, \frac{1.5}{e_{3}}\right) \tag{4-16}
\end{equation*}
$$

is an equilibrium price vector. Here the equilibrium price of a good is a decreasing function of the endowment of the good.

The question did not ask for the equilibrium consumption bundles for the consumers, but substitution from $(4-16)$ into $(4-2)-(4-7)$ yields equilibrium consumption levels of

$$
\begin{align*}
\mathbf{x}^{1} & =\left(\frac{3 e_{1}}{2}, \frac{3 e_{2}}{4}, e_{3}\right) \tag{4-17}\\
\mathbf{x}^{2} & =\left(0, \frac{9 e_{2}}{4}, 0\right) \tag{4-18}\\
\mathbf{x}^{3} & =\left(\frac{3 e_{1}}{2}, 0,2 e_{3}\right) \tag{4-19}
\end{align*}
$$

Q5. Find all the Nash equilibria (in pure and mixed strategies) to the following two-person game in strategic form.

$$
L \quad M \quad R
$$

a	$(2,2)$	$(10,1)$	$(2,6)$
b	$(6,4)$	$(12,3)$	$(2,12)$
c	$(0,12)$	$(10,10)$	$(1,10)$
d	$(12,2)$	$(6,0)$	$(0,0)$

A5. Notice first that strategy c for player $\# 1$ is strictly dominated by strategy b : that means that player $\# 1$ will never play strategy c, and will never put any weight on strategy c when she chooses a mixed strategy.

Also, strategy M is strictly dominated for player 2 by strategy L. So, again player $\# 2$ will never play strategy M, and will never put any weight on strategy M when he chooses a mixed strategy.

Strategy a is weakly dominated by strategy b for player $\# 1$. She might still play strategy a in equilibrium - but she will never put any probability weight on strategy a in a mixed-strategy equilibrium.

There are three pure strategy Nash equilibrium to this game : $(a, R),(b, R)$, and (d, L). Even though a is a weakly dominated strategy, neither player has any incentive to change her or his strategy when player \#1 plays a and player \#2 plays R.

Since a and b are both best responses (for player \#1) to R, and since R is a best response (for player $\# 2)$ to a and to b, there are "partially mixed" strategy equilibria in which player \#1 randomizes between a and b, and player $\# 2$ plays R (for sure) : if player \#1 plays a with probability γ, and b with probability $1-\gamma$ - for any γ in $[0,1]$ - then there is a Nash equilibrium, in which player $\# 2$ plays R for certain, and player $\# 1$ randomizes between a and b.

Finally, if player $\# 2$ were to randomize between L and R, player $\# 1$ could not choose a with positive probability (since it is weakly dominated). Player 1 would get an expected payoff of $6 \beta+2(1-\beta)$ from playing b, and an expected payoff of 12β from playing d, if player $\# 2$ were to play L with probability β and R with probability $1-\beta$. So player \#1 would be willing to randomize between b and d only if

$$
\begin{equation*}
6 \beta+2(1-\beta)=12 \beta \tag{5-1}
\end{equation*}
$$

or

$$
\beta=\frac{1}{4}
$$

On the other hand, if player \#1 played b with probability α and d with probability $1-\alpha$, then player \#2 would be willing to randomize between L and R, if they both offered him the same expected payoff. Since he would get an expected payoff of $4 \alpha+2(1-\alpha)$ from L, and 12α from R, he will be willing to randomize only if

$$
\begin{equation*}
4 \alpha+2(1-\alpha)=12 \alpha \tag{5-2}
\end{equation*}
$$

or

$$
\alpha=\frac{1}{5}
$$

So there is a mixed-strategy equilibrium in which player \#1 plays b with probability $0.2, d$ with probability 0.8 , and the other two strategies with probability 0 , and in which player $\# 2$ plays L with probability 0.25 , M with probability 0 , and R with probability 0.75 .

Summarizing, in this game there are
(a) 3 pure-strategy Nash equilibria : $(a, R),(b, R)$, and (d, L)
(b) a mixed-strategy Nash equilibrium in which 1 plays a with probability γ, b with probability $1-\gamma$, and 2 plays R for sure [where $0 \leq \gamma \leq 1$]
(c) a mixed-strategy Nash equilibrium in which 1 plays b with probability 0.2 and d with probability 0.8 , and 2 plays L with probability 0.25 and R with probability 0.75

