1. Q Are the preferences represented by the following utility function strictly monotonic? Convex?

$$
u\left(x_{1}, x_{2}\right)=\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}
$$

In each case, explain briefly.
A : Since this utility function is strictly increasing in both arguments, the preferences it represents are strictly monotonic.

But the preferences are not convex. Consider the following two consumption bundles : $\mathbf{x}^{1}=$ $(1,0)$ and $\mathbf{x}^{2}=(0,1)$. Both bundles are on the same indifference curve, since they each yield a utility level of 1 . But the bundle \mathbf{x}^{3} which is halfway along the line connecting the two bundles,

$$
\mathbf{x}^{3}=(0.5) \mathbf{x}^{1}+(0.5) \mathbf{x}^{2}=\left(\frac{1}{2}, \frac{1}{2}\right)
$$

yields a utility level of

$$
u\left(\frac{1}{2}, \frac{1}{2}\right)=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}<1
$$

So the "at least as good as" sets, $\succeq(\mathbf{x})$, are not convex : $\mathbf{x}^{1} \in \succeq(\mathbf{x}), \mathbf{x}^{2} \in \succeq(\mathbf{x})$, but $\mathbf{x}^{3}=(0.5) \mathbf{x}^{1}+(0.5) \mathbf{x}^{2} \notin \succeq(\mathbf{x})$, if, for example $\mathbf{x}=(0.7,0.7)$.

Alternatively, one could look at the shape of the indifference curves. The equation of an indifference curve for these preferences is

$$
x_{2}=\sqrt{A-\left(x_{1}\right)^{2}}
$$

for some level of utility A, and differentiation of this equation shows that the slope of the indifference curve gets more steep as x_{1} increases and x_{2} decreases.

Thirdly, the matrix of second derivatives of the utility function is

$$
H(\mathbf{x})=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)
$$

which is a positive definite matrix, meaning that the function $U(\mathbf{x})$ is strictly convex : a strictly convex function cannot be quasi-concave. [This matrix can also be used to show that $\mathbf{v}^{\prime} H(\mathbf{x}) \mathbf{v}>0$ when $\nabla U(\mathbf{x}) \cdot \mathbf{v}=\mathbf{0}$, and it also can be showed that the bordered Hessian matrix does not have the alternating sign pattern required for quasi-concavity..]
2. Q Are the preferences represented by the following utility function strictly monotonic? Convex?

$$
u\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}+x_{3}
$$

In each case, explain briefly.
A Since all the partial derivatives of this function are non-negative, and since the partial derivative with respect to commodity $\# 3$ is strictly positive, therefore preferences are strictly monotonic.

One way of checking for convexity of the preferences is to calculate the matrix $H(\mathbf{x})$ of second derivatives of the utility function. That matrix is

$$
H(\mathrm{x})=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

So that

$$
\mathbf{v}^{\prime} H(\mathbf{x}) \mathbf{v}=2 v_{1} v_{2}
$$

Now if

$$
\nabla u(\mathbf{x}) \cdot \mathbf{v}=0
$$

then

$$
v_{1} x_{2}+v_{2} x_{1}+v_{3}=0
$$

If $\mathbf{x}=(1,1,1)$, and if $\mathbf{v}=(1,1,-2)$, then $\mathbf{v}^{\prime} H(\mathbf{x}) \mathbf{v}=2>0$, even though $\nabla U(\mathbf{x}) \cdot \mathbf{v}=0$. So preferences here are not convex.

Another way to demonstrate that these preferences are not convex, is to come up with a counter-example. That is, if there is some pair of consumption vectors \mathbf{x}^{1} and \mathbf{x}^{2}, with $u\left(\mathbf{x}^{1}\right)=$ $u\left(\mathrm{x}^{2}\right)$, and some fraction t between 0 and 1 , such that

$$
u\left(t \mathbf{x}^{1}+(1-t) \mathbf{x}^{2}\right)<u\left(\mathbf{x}^{1}\right)
$$

then the preferences have been demonstrated not to be convex.
Here is one such example.
$u(1,1,10)=11$, and $u(3,3,2)=11$. But if we take the consumption bundle which is halfway between these bundles, then $u(2,2,6)=10<11$. So this is an example of two bundles which are on the same indifference surface, and of another bundle which is on the line connecting them, which is on a lower indifference surface.

The bordered Hessian test will also work here. The bordered Hessian matrix is

$$
\left(\begin{array}{cccc}
0 & x_{2} & x_{1} & 1 \\
x_{2} & 0 & 1 & 0 \\
x_{1} & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

The determinants of the principal minors of order 2 or more [cf. Jehle and Reny, page 511] are $M_{2}=-x_{2}^{2}<0, M_{3}=2 x_{1} x_{2}>0$, and $M_{4}=1>0$, so that they do not have the alternating sign pattern required for quasi-concavity.
3. Q Solve for a person's Marshallian demand functions, if her preferences can be represented by the utility function

$$
u\left(x_{1}, x_{2}\right)=-\exp \left(-x_{1}\right)-\exp \left(-x_{2}\right)
$$

(where "exp" is the exponential function, $\exp a \equiv e^{a}$).
A Since the derivative of e^{x} with respect to x is e^{x}, it follows that

$$
\begin{aligned}
& u_{1}=\exp \left(-x_{1}\right) \\
& u_{2}=\exp \left(-x_{2}\right)
\end{aligned}
$$

so that the marginal rate of substitution is

$$
M R S \equiv u_{2} / u_{1}=\exp \left(x_{1}-x_{2}\right)
$$

where I have used the fact that

$$
\frac{e^{a}}{e^{b}}=e^{a-b}
$$

Since the consumer's first-order condition is that her $M R S$ equal the price ratio, therefore, she sets

$$
\begin{equation*}
\exp \left(x_{1}-x_{2}\right)=\frac{p_{2}}{p_{1}} \tag{3-1}
\end{equation*}
$$

where p_{1} and p_{2} are the prices of the two goods. Taking natural logarithms of both sides of equation $(3-1)$,

$$
\begin{equation*}
x_{1}-x_{2}=\ln p_{1}-\ln p_{2} \tag{3-2}
\end{equation*}
$$

where I have used the fact that $\ln (a / b)=\ln a-\ln b$.
If we substitute for x_{2} from the consumer's budget constraint,

$$
\begin{equation*}
x_{2}=\frac{y-p_{1} x_{1}}{p_{2}} \tag{3-3}
\end{equation*}
$$

where y is the consumer's income, then equation $(3-2)$ becomes

$$
\begin{equation*}
x_{1}-\frac{y}{p_{2}}+\frac{p_{1}}{p_{2}} x_{1}=\ln p_{1}-\ln p_{2} \tag{3-4}
\end{equation*}
$$

Or

$$
\begin{equation*}
x_{1}\left(1+\frac{p_{1}}{p_{2}}\right)=\frac{y}{p_{2}}+\ln p_{2}-\ln p_{1} \tag{3-5}
\end{equation*}
$$

so that the Marshallian demand function for good 1 is

$$
\begin{equation*}
x_{1}^{M}\left(p_{1}, p_{2}, y\right)=\frac{1}{p_{1}+p_{2}} y+\frac{p_{2}}{p_{1}+p_{2}}\left[\ln p_{2}-\ln p_{1}\right] \tag{3-6}
\end{equation*}
$$

and similarly, the Marshallian demand function for good 2 is

$$
\begin{equation*}
x_{2}^{M}\left(p_{1}, p_{2}, y\right)=\frac{1}{p_{1}+p_{2}} y+\frac{p_{1}}{p_{1}+p_{2}}\left[\ln p_{1}-\ln p_{2}\right] \tag{3-7}
\end{equation*}
$$

[Equations $(3-6)$ and $(3-7)$ make sense only if they imply non-negative values for consumption of each good. Otherwise, we have a corner solution. If

$$
\ln p_{1}-\ln p_{2}>\frac{y}{p_{2}}
$$

then we have a corner solution in which $x_{1}=0$ and $x_{2}=y / p_{2}$, and if

$$
\ln p_{2}-\ln p_{1}>\frac{y}{p_{1}}
$$

then $x_{1}=y / p_{1}$ and $x_{2}=0$.]
4. Q If a person's preferences can be represented by the direct utility function

$$
u\left(x_{1}, x_{2}\right)=100-\frac{1}{x_{1}}-\frac{1}{x_{2}}
$$

find the person's Marshallian demand functions for each good, her indirect utility function, her Hicksian demand function, and her expenditure function.
A Here the marginal utilities are

$$
\begin{aligned}
& u_{1}=\left[\frac{1}{x_{1}}\right]^{2} \\
& u_{2}=\left[\frac{1}{x_{1}}\right]^{2}
\end{aligned}
$$

so that

$$
M R S \equiv \frac{u_{2}}{u_{1}}=\left(\frac{x_{1}}{x_{2}}\right)^{2}
$$

and the consumer's first-order condition for utility maximization is

$$
\begin{equation*}
\left(\frac{x_{1}}{x_{2}}\right)^{2}=\frac{p_{2}}{p_{1}} \tag{4-1}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
x_{2}=x_{1}\left(\frac{\sqrt{p_{1}}}{\sqrt{p_{2}}}\right) \tag{4-2}
\end{equation*}
$$

Substituting from equation (4-2) into the budget constraint,

$$
\begin{equation*}
p_{1} x_{1}+p_{2}\left(\frac{\sqrt{p_{1}}}{\sqrt{p_{2}}}\right) x_{1}=y \tag{4-3}
\end{equation*}
$$

or

$$
\begin{equation*}
x_{1}=\frac{y}{\sqrt{p_{1}}\left(\sqrt{p_{1}}+\sqrt{p_{2}}\right)} \tag{4-4}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
x_{2}=\frac{y}{\sqrt{p_{2}}\left(\sqrt{p_{1}}+\sqrt{p_{2}}\right)} \tag{4-5}
\end{equation*}
$$

Equations $(4-4)$ and $(4-5)$ are the Marshallian demand functions for the two goods.
They also could be derived using equations (E10) and (E11) in Jehle and Reny, page 26 - since these preferences are examples of $C E S$ preferences. This utility function could be transformed into

$$
U\left(x_{1}, x_{2}\right)=-\left(\left[x_{1}\right]^{-1}+\left[x_{2}\right]^{-1}\right)
$$

by adding 100 , which is a monotonic transformation. Then letting $V\left(x_{1}, x_{2}\right)=-\left[U\left(x_{1}, x_{2}\right)\right]^{-1}($ a monotonic transformation) makes the utility function

$$
V\left(x_{1}, x_{2}\right)=\left(\left[x_{1}\right]^{-1}+\left[x_{2}\right]^{-1}\right)^{-1}
$$

which is $C E S$.
The indirect utility function, expenditure funaction, and Hicksian demand functions can all be calculated using the textbook's formulae for $C E S$ preferences.

But they also can be obtained directly. Substituting for x_{1} and x_{2} into the utility function from equations $(4-4)$ and $(4-5)$

$$
v\left(p_{1}, p_{2}, y\right)=100-\frac{\left[\sqrt{p_{1}}+\sqrt{p_{2}}\right] \sqrt{p_{1}}}{y}-\frac{\left[\sqrt{p_{1}}+\sqrt{p_{2}}\right] \sqrt{p_{2}}}{y}
$$

so that

$$
\begin{equation*}
v\left(p_{1}, p_{2}, y\right)=100-\frac{\left[\sqrt{p_{1}}+\sqrt{p_{2}}\right]^{2}}{y} \tag{4-6}
\end{equation*}
$$

To find the expenditure function, use the fact that $v\left(p_{1}, p_{2}, e\left(p_{1}, p_{2}, u\right)=u\right.$, so that equation $(4-6)$ implies that

$$
u=100-\frac{\left[\sqrt{p_{1}}+\sqrt{p_{2}}\right]^{2}}{e\left(p_{1}, p_{2}, u\right)}
$$

meaning that

$$
\begin{equation*}
e\left(p_{1}, p_{2}, u\right)=\frac{\left[\sqrt{p_{1}}+\sqrt{p_{2}}\right]^{2}}{100-u} \tag{4-7}
\end{equation*}
$$

The Hicksian demand functions are the derivatives of the expenditure function with respect to the prices, or

$$
\begin{align*}
& x_{1}^{H}\left(p_{1}, p_{2}, u\right)=e_{1}\left(p_{1}, p_{2}, u\right)=\frac{\sqrt{p_{1}}+\sqrt{p_{2}}}{\sqrt{p_{1}}(100-u)} \tag{4-8}\\
& x_{2}^{H}\left(p_{1}, p_{2}, u\right)=e_{1}\left(p_{1}, p_{2}, u\right)=\frac{\sqrt{p_{1}}+\sqrt{p_{2}}}{\sqrt{p_{2}}(100-u)} \tag{4-9}
\end{align*}
$$

These Hicksian demands can also be obtained by minimizing $p_{1} x-1+p_{2} x_{2}$ subject to the constraint $100-1 / x_{1}-1 / x_{2}=u$.
5. Q A person's preferences are described as quasi-linear if they can be represented by the utility function

$$
u\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1}+g\left(x_{2}, x_{3}, \ldots, x_{n}\right)
$$

for some increasing, concave function $g: R^{n-1} \rightarrow R$.
If a person's preferences are quasi-linear, what is the income elasticity of demand for each good?

Explain briefly.
A Given these quasi-linear preferences, the person's first-order conditions for utility maximization are

$$
\begin{gather*}
u_{1}=1=\lambda p_{1} \tag{5-1}\\
u_{i}=g_{i}=\lambda p_{i} \quad i=2,3, \cdots, n \tag{5-2}
\end{gather*}
$$

where λ is the Lagrange multiplier on the budget constraint in the consumer's utility maximization problem.

That means that the first-order conditions for consumption of goods $2,3, \ldots, n$ can be written

$$
\begin{equation*}
u_{i}=\frac{1}{p_{1}} g_{i}\left(x_{2}, x_{3}, \ldots, x_{n}\right) \quad i=2,3, \cdots, n \tag{5-3}
\end{equation*}
$$

Equation ($5-3$) defines the $n-1$ levels of consumption $x_{2}, x_{3}, \ldots, x_{n}$ of all goods but \#1, as functions of the n prices $p_{1}, p_{2}, p_{3}, \ldots, p_{n}$. So the system (5-3) can be solved for the Marshallian demand functions for goods $\# 2,3, \ldots, n$. But the level y of income does not appear in equation (5-3) ; changing y will not affect the levels of consumption $x_{2}, x_{3}, \ldots, x_{n}$ which solve equation $(5-3)$, provided that the prices $p_{1}, p_{2}, p_{3}, \ldots, p_{n}$ are unchanged.

That is, the income elasticity of demand for all goods except good \#1 is zero.
Since the budget constraint is

$$
\begin{equation*}
y=p_{1} x_{1}+\cdots+p_{n} x_{n} \tag{5-4}
\end{equation*}
$$

differentiation of equation $(5-4)$ with respect to y implies that

$$
\begin{equation*}
1=p_{1} \frac{\partial x_{1}}{\partial y} \tag{5-5}
\end{equation*}
$$

when account is taken of the fact that

$$
\frac{\partial x_{i}}{\partial y}=0 \quad i=2,3, \cdots, n
$$

So the income elasticity of demand for good \#1 is

$$
\eta_{y}^{1}=\frac{\partial x_{1}}{\partial y} \frac{y}{x_{1}}=\frac{y}{p_{1} x_{1}}=\frac{1}{s_{1}}
$$

where s_{i} is the share of the person's income which she chooses to spend on good $\# i$.

