due: Wednesday March 9 before class
Do all 5 questions. Each counts 20\%.

1. What are the market price, and aggregate quantity sold, in long-run equilibrium in a perfectly competitive market for which the demand function has the equation

$$
Q=2000-5 p
$$

(where Q is aggregate quantity demanded, and p the price), if there is free entry by identical firms to the industry, each of which has the long-run total cost function

$$
T C=600 q-80 q^{2}+4 q^{3}
$$

where q is the quantity produced by the firm?
2. Suppose that a market contains 1 million identical consumers, each of whom has preferences which can be represented by the utility function

$$
U\left(X, q_{1}, q_{2}\right)=X+\left(q_{1}^{\alpha}+q_{2}^{\alpha}\right)^{\beta}
$$

where X is consumption of a numéraire good, and q_{1} and q_{2} are consumption of goods produced by firms $\# 1$ and $\# 2$ respectively, and where $\alpha<1$ and $\beta<1$.

Firms 1 and 2 each have the identical total cost function, $C(q, \mathbf{w})=c q$, where c is a constant.
i Which levels of output for the two firms would maximize their combined profits?
ii What levels of output would firms \#1 and \#2 produce if they behaved as Cournot duopolists?
(You may assume that $q_{1}=q_{2}$ in the solutions to each of the problems.)
3. Solve for the quantity produced by each firm, the price, and each firm's profits, if there were J firms acting as Cournot oligopolists, each producing a homogeneous good, for which the market demand is linear

$$
p=a-b Q
$$

where $Q \equiv q_{1}+q_{2}+\cdots+q_{J}$ was industry output, if each firm had the (same) total cost function

$$
C(q)=c q^{2}
$$

for some positive constant c ?
4. What would be the equilibrium price, and the equilibrium profits of each firm, in a market with two Bertrand oligopolists, producing goods which are imperfect substitutes for each other, with quantity demanded of the products of the two firms being

$$
\begin{aligned}
& q_{1}=\frac{p_{1}^{r-1}}{p_{1}^{r}+p_{2}^{r}} \\
& q_{2}=\frac{p_{2}^{r-1}}{p_{1}^{r}+p_{2}^{r}}
\end{aligned}
$$

where $r<0$, if each firm's cost of producing q units is $c q$ (where c is a positive constant). (You may restrict attention to symmetric equilibria, in which $p_{1}=p_{2}$.)
5. Another model of duopoly is that of von Stackelberg, in which firms choose output levels sequentially. That is, firm 1 chooses its output. Firm 2 observes what output level firm 1 has chosen, and then chooses its own output level. What output levels would the 2 firms choose, if they behaved in this manner, if they both produced an identical product for which the market inverse demand function had the equation

$$
p=21-\left(q_{1}+q_{2}\right)
$$

if each firm had a total cost function

$$
T C=\begin{array}{rll}
4+q_{i} & \text { if } & q_{i}>0 \\
0 & \text { if } & q_{i}=0
\end{array}
$$

where q_{i} is the output level of firm i ?

